SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(David Florian 1981) srt2:(2018)"

Sökning: WFRF:(David Florian 1981) > (2018)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Raphael, 1990, et al. (författare)
  • Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape
  • 2018
  • Ingår i: Journal of Industrial Microbiology and Biotechnology. - : Oxford University Press (OUP). - 1367-5435 .- 1476-5535. ; 45:7, s. 467-480
  • Forskningsöversikt (refereegranskat)abstract
    • Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation through different companies, and conclude with future perspectives of this technology.
  •  
2.
  • Ferreira, Raphael, 1990, et al. (författare)
  • Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols
  • 2018
  • Ingår i: Metabolic Engineering Communications. - : Elsevier BV. - 2214-0301. ; 6, s. 22-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy by overexpressing genes encoding a deregulated acetyl-CoA carboxylase, ACC1 S659A/S1157A (ACC1**), as well as the last two steps of TAG formation: phosphatidic phosphatase (PAH1) and diacylglycerol acyltransferase (DGA1), ultimately leading to 129 mg∙gCDW −1 of TAGs. Disruption of TAG lipase genes TGL3, TGL4, TGL5 and sterol acyltransferase gene ARE1 increased the TAG content to 218 mg∙gCDW −1 . Further disruption of the beta-oxidation by deletion of POX1, as well as glycerol-3-phosphate utilization through deletion of GUT2, did not affect TAGs levels. Finally, disruption of the peroxisomal fatty acyl-CoA transporter PXA1 led to accumulation of 254 mg∙gCDW −1 . The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species for high level lipid production.
  •  
3.
  • Ferreira, Raphael, 1990, et al. (författare)
  • Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae
  • 2018
  • Ingår i: ACS Synthetic Biology. - : American Chemical Society (ACS). - 2161-5063. ; 7:1, s. 10-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity of the bacterial endoribonuclease Csy4 from Pseudomonas aeruginosa, to generate multiple gRNAs from a single transcript for genome editing and gene interference applications in S. cerevisiae. In regards to genome editing, we performed a quadruple deletion of FAA1, FAA4, POX1 and TES1 reaching 96% efficiency out of 24 colonies tested. Then, we used this system to efficiently transcriptionally regulate the three genes, OLE1, HMG1 and ACS1. Thus, we demonstrate that multiplexed genome editing and gene regulation can be performed in a fast and effective manner using Csy4.
  •  
4.
  • Teixeira, Paulo, 1990, et al. (författare)
  • Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae
  • 2018
  • Ingår i: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of triacylglycerols (TAGs) through microbial fermentation is an emerging alternative to plant and animal-derived sources. The yeast Saccharomyces cerevisiae is a preferred organism for industrial use but has natively a very poor capacity of TAG production and storage. Here, we engineered S. cerevisiae for accumulation of high TAG levels through the use of structural and physiological factors that influence assembly and biogenesis of lipid droplets. First, human and fungal perilipin genes were expressed, increasing TAG content by up to 36% when expressing the human perilipin gene PLIN3. Secondly, expression of the FIT2 homologue YFT2 resulted in a 26% increase in TAG content. Lastly, the genes ERD1 and PMR1 were deleted in order to induce an endoplasmic reticulum stress response and stimulate lipid droplet formation, increasing TAG content by 72% for Δerd1. These new approaches were implemented in previously engineered strains that carry high flux of fatty acid biosynthesis and conversion of acyl-CoA into TAGs, resulting in improvements of up to 138% over those high-producing strains without any substantial growth effects or abnormal cell morphology. We find that these approaches not only represent a significant improvement of S. cerevisiae for TAG production, but also highlight the importance of lipid droplet dynamics for high lipid accumulation in yeast.
  •  
5.
  • Yu, Tao, 1986, et al. (författare)
  • Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis
  • 2018
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 174:6, s. 1549-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy