SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Angelis Filippo) srt2:(2015-2019)"

Sökning: WFRF:(De Angelis Filippo) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cinquanta, Eugenio, et al. (författare)
  • Ultrafast THz Probe of Photoinduced Polarons in Lead-Halide Perovskites
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007. ; 122:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the nature of photoexcited charge carriers in CsPbBr3 nanocrystal thin films by ultrafast optical pump-THz probe spectroscopy. We observe a deviation from a pure Drude dispersion of the THz dielectric response that is ascribed to the polaronic nature of carriers; a transient blueshift of observed phonon frequencies is indicative of the coupling between photogenerated charges and stretching-bending modes of the deformed inorganic sublattice, as confirmed by DFT calculations.
  •  
2.
  • Monti, Susanna, et al. (författare)
  • Theoretical Investigation of Adsorption, Dynamics, Self-Aggregation, and Spectroscopic Properties of the D102 Indoline Dye on an Anatase (101) Substrate
  • 2016
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:5, s. 2787-2796
  • Tidskriftsartikel (refereegranskat)abstract
    • A coherent account of adsorption modes, dynamics, self aggregation, and spectroscopic properties of an indoline organic dye adsorbed on TiO2 anatase (101) substrates is reported. The study is performed by combining reactive molecular dynamics (reaxFF) simulations with time-dependent density functional theory calculations, and the reliability of the results is assessed through comparison with theoretical and experimental data available in the literature. The use of a theoretical multilevel approach has proven to be crucial to gain a deep understanding, at an atomistic level, of the morphology and electronic properties of dye-sensitized heterogeneous interfaces. A realistic description of the functionalized anatase (101) interface, where a variety of binding modes are present, has been achieved by means of extensive molecular dynamics simulations of the adsorption of dye clusters made of different molecular units on medium/large size TiO2 anatase slabs. Our results disclose that the main driving forces toward formation of ordered surface aggregates are pi stacking and T-shaped interactions between the aromatic rings of the donor moiety of the molecules, as well as the tendency to maximize the anchoring points with the surface. The dye aggregates were found to be organized in domains, characterized by a different orientation of the packing units, and, in the high coverage limit, presenting a certain degree of short-to-medium range order.
  •  
3.
  • Xie, Zhen (författare)
  • High Resolution Tip-Enhanced Raman Images of Single Molecules from First Principles Simulations
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the precise control of spatially confined plasmon (SCP), tip-enhanced Raman spectroscopy (TERS) has achieved sub-nanometer resolution, leading to the chemical and physical characterization of the single molecule by optical Raman images. In the high resolution TERS measurements, the SCP spatial distribution generates the position-dependent Raman images. The position dependence challenges the conventional response theory, because the assumption of interactions between the molecule and the uniform electromagnetic field does not hold anymore. Moreover, as an emerging technology, potential applications of high resolution TERS are required to be fully explored. In this thesis, the developed theory for modeling high resolution Raman images is presented. By taking a series of typical molecular systems as examples, we theoretically predict some fine applications of single-molecule TERS.The first part of the thesis introduces the development of Raman spectroscopy and images. To achieve the final target of single molecule characterization, high spatial resolution single-molecule TERS is established and improved. As a nondestructive measuring tool, Raman imaging technology offers the means to study single molecules with unprecedented spatial resolution.The high resolution Raman images theory with detailed derivations is given in the second part of the thesis. The key factor is to take the inhomogeneous spatial distribution of SCP field into account, when we construct the interaction Hamiltonian between the localized light field and the molecule. This makes the numerical simulations of Raman images feasible.Other parts of the thesis give some theoretical predictions for potential applications of the emerging Raman imaging technology. Specifically, resonance Raman images can visualize the geometric changes of a single molecule switch and the intramolecular structure in real space. Since the localized plasmonic field can affect the electron transition, the excited quantum states can thus be effectively manipulated. This breaks down the intrinsic spatial selection rule imposed in conventional spectra. In addition, an effective linear response algorithm is used to simulate nonresonance Raman images. The unique superiority of spatial vibration resolution from non-resonance cases provides rich information about the single molecule. By constructing images from different vibrational modes, the spatial chemical distribution within a single molecule can be visualized. All these findings will facilitate fine applications of the emerging TERS technology in the coming years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy