SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Frenne Pieter) srt2:(2010-2014)"

Sökning: WFRF:(De Frenne Pieter) > (2010-2014)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Frenne, Pieter, et al. (författare)
  • Interregional variation in the floristic recovery of post-agricultural forests
  • 2011
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 99:2, s. 600-609
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Worldwide, the floristic composition of temperate forests bears the imprint of past land use for decades to centuries as forests regrow on agricultural land. Many species, however, display significant interregional variation in their ability to (re)colonize post-agricultural forests. This variation in colonization across regions and the underlying factors remain largely unexplored. 2. We compiled data on 90 species and 812 species x study combinations from 18 studies across Europe that determined species' distribution patterns in ancient (i.e. continuously forested since the first available land use maps) and post-agricultural forests. The recovery rate (RR) of species in each landscape was quantified as the log-response ratio of the percentage occurrence in post-agricultural over ancient forest and related to the species-specific life-history traits and local (soil characteristics and light availability) and regional factors (landscape properties as habitat availability, time available for colonization, and climate). 3. For the herb species, we demonstrate a strong (interactive) effect of species' life-history traits and forest habitat availability on the RR of post-agricultural forest. In graminoids, however, none of the investigated variables were significantly related to the RR. 4. The better colonizing species that mainly belonged to the short-lived herbs group showed the largest interregional variability. Their recovery significantly increased with the amount of forest habitat within the landscape, whereas, surprisingly, the time available for colonization, climate, soil characteristics and light availability had no effect. 5. Synthesis. By analysing 18 independent studies across Europe, we clearly showed for the first time on a continental scale that the recovery of short-lived forest herbs increased with the forest habitat availability in the landscape. Small perennial forest herbs, however, were generally unsuccessful in colonizing post-agricultural forest even in relatively densely forested landscapes. Hence, our results stress the need to avoid ancient forest clearance to preserve the typical woodland flora.
  •  
2.
  • De Frenne, Pieter, et al. (författare)
  • Latitudinal gradients as natural laboratories to infer species' responses to temperature
  • 2013
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 101:3, s. 784-795
  • Forskningsöversikt (refereegranskat)abstract
    • Macroclimatic variation along latitudinal gradients provides an excellent natural laboratory to investigate the role of temperature and the potential impacts of climate warming on terrestrial organisms. Here, we review the use of latitudinal gradients for ecological climate change research, in comparison with altitudinal gradients and experimental warming, and illustrate their use and caveats with a meta-analysis of latitudinal intraspecific variation in important life-history traits of vascular plants. We first provide an overview of latitudinal patterns in temperature and other abiotic and biotic environmental variables in terrestrial ecosystems. We then assess the latitudinal intraspecific variation present in five key life-history traits [plant height, specific leaf area (SLA), foliar nitrogen:phosphorus (N:P) stoichiometry, seed mass and root:shoot (R:S) ratio] in natural populations or common garden experiments across a total of 98 plant species. Intraspecific leaf N:P ratio and seed mass significantly decreased with latitude in natural populations. Conversely, the plant height decreased and SLA increased significantly with latitude of population origin in common garden experiments. However, less than a third of the investigated latitudinal transect studies also formally disentangled the effects of temperature from other environmental drivers which potentially hampers the translation from latitudinal effects into a temperature signal. Synthesis. Latitudinal gradients provide a methodological set-up to overcome the drawbacks of other observational and experimental warming methods. Our synthesis indicates that many life-history traits of plants vary with latitude but the translation of latitudinal clines into responses to temperature is a crucial step. Therefore, especially adaptive differentiation of populations and confounding environmental factors other than temperature need to be considered. More generally, integrated approaches of observational studies along temperature gradients, experimental methods and common garden experiments increasingly emerge as the way forward to further our understanding of species and community responses to climate warming.
  •  
3.
  • De Frenne, Pieter, et al. (författare)
  • Plant movements and climate warming : intraspecific variation in growth responses to nonlocal soils
  • 2014
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 202:2, s. 431-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.
  •  
4.
  • De Frenne, Pieter, et al. (författare)
  • Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient
  • 2011
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 17:10, s. 3240-3253
  • Tidskriftsartikel (refereegranskat)abstract
    • Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics.
  •  
5.
  • De Frenne, Pieter, et al. (författare)
  • The response of forest plant regeneration to temperature variation along a latitudinal gradient
  • 2012
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 109:5, s. 1037-1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming. Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments. Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted. Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.
  •  
6.
  • De Frenne, Pieter, et al. (författare)
  • The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants
  • 2010
  • Ingår i: Ecological research. - : Wiley. - 0912-3814 .- 1440-1703. ; 25:1, s. 163-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Open-top chambers (OTCs) are widely used experimental warming devices in open-field ecosystems such as tundra and alpine heath. However, knowledge of their performance in temperate deciduous forest ecosystems is largely lacking. The application of OTCs in forests might become important in the future since the effects of climate warming on growth, reproduction, and future distribution of understorey forest herbs have rarely been investigated. Therefore, polycarbonate OTCs covered with (OTCs+GF) and without permeable polypropylene GardenFleece (OTCs−GF) were installed in a temperate deciduous forest to create an experimental warming gradient. Short-term responses in phenology, growth, and reproduction of a model understorey forest herb (Anemone nemorosa L.) to OTC installation were determined. In a second growing season, an in-depth study of multiple abiotic conditions inside OTCs−GF was performed. Both OTCs+GF and OTCs−GF raised air and soil temperature in a realistic manner (ca. +0.4°C to +1.15°C), but OTCs−GF only in the leafless period (up to +1.5°C monthly average soil temperature). The early flowering forest herb A. nemorosa also showed a clear phenotypic response to OTC installation. Based on these facts and the large ecological drawbacks associated with OTCs+GF (mostly in connection with a higher relative air humidity and a lower light quantity) and very modest abiotic changes in OTCs−GF, we encourage the use of OTCs−GF in deciduous forest ecosystems for evaluating climate-warming effects on early flowering understorey forest herbs. There is also a potential to use this warming method on later flowering species, but this needs further research.
  •  
7.
  • Maes, Sybryn L., et al. (författare)
  • Effects of enhanced nitrogen inputs and climate warming on a forest understorey plant assessed by transplant experiments along a latitudinal gradient
  • 2014
  • Ingår i: Plant Ecology. - : Springer Science and Business Media LLC. - 1385-0237 .- 1573-5052. ; 215:8, s. 899-910
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming and enhanced nitrogen (N) inputs are two key global-change drivers affecting temperate forest ecosystems simultaneously. Interactive effects of multiple drivers might cause species responses to differ from those in single-factor experiments; therefore, there is an urgent need for more multi-factor studies. Here, we assessed the growth and reproductive performance of multiple populations of a widespread grass of deciduous forests (Milium effusum) sampled along a latitudinal gradient and subjected to experimental manipulations of temperature and nitrogen availability. Common garden transplant experiments along the latitudinal gradient were used to manipulate temperatures and combined with experimental N addition to assess intraspecific responses of the study species to global-change drivers as well as to determine local adaptation. The total biomass, number of seeds and seedling emergence time of M. effusum increased when transplanted in the southern common garden. Apart from effects on the seed mass, the species did not respond to N addition alone. Yet, interactive effects between warming and N addition were found: N addition led to increased biomass growth but only in the northern common garden. Significant home-site advantages were apparent, most likely because of increased mycorrhizal colonization of roots of local transplants. We show that multiple global-change drivers may alter dynamics in understorey communities of temperate forests. Our study reinforces the need to increase our understanding of plant responses to future environmental changes by expanding the multi-factor research framework.
  •  
8.
  •  
9.
  • De Frenne, Pieter, et al. (författare)
  • An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient
  • 2011
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 34:1, s. 132-140
  • Tidskriftsartikel (refereegranskat)abstract
    • We measured LHS traits in 41 Anemone nemorosa and 44 Milium effusum populations along a 1900-2300 km latitudinal gradient from N France to N Sweden. We then applied multilevel models to identify the effects of regional (temperature, latitude) and local (soil fertility and acidity, overstorey canopy cover) environmental factors on LHS traits. Both species displayed a significant 4% increase in plant height with every degree northward shift (almost a two-fold plant height difference between the southernmost and northernmost populations). Neither seed mass nor SLA showed a significant latitudinal cline. Temperature had a large effect on the three LHS traits of Anemone. Latitude, canopy cover and soil nutrients were related to the SLA and plant height of Milium. None of the investigated variables appeared to be related to the seed mass of Milium. The variation in LHS traits indicates that the ecological strategy determined by the position of each population in this three-factor triangle is not constant along the latitudinal gradient. The significant increase in plant height suggests greater competitive abilities for both species in the northernmost populations. We also found that the studied environmental factors affected the LHS traits of the two species on various scales: spring-flowering Anemone was affected more by temperature, whereas early-summer flowering Milium was affected more by local and other latitude-related factors. Finally, previously reported cross-species correlations between LHS traits and latitude were generally unsupported by our within-species approach.
  •  
10.
  • De Frenne, Pieter, et al. (författare)
  • Microclimate moderates plant responses to macroclimate warming
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:46, s. 18561-18565
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., thermophilization of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that climatic lags may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy