SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Haan Robert) srt2:(2015-2019)"

Sökning: WFRF:(De Haan Robert) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
2.
  • Dai, Meiling, et al. (författare)
  • Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins
  • 2016
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 90:20, s. 9457-9470
  • Tidskriftsartikel (refereegranskat)abstract
    • Influenza A virus (IAV) attachment to and release from sialoside receptors is determined by the balance between hemagglutinin (HA) and neuraminidase (NA). The molecular determinants that mediate the specificity and activity of NA are still poorly understood. In this study, we aimed to design the optimal recombinant soluble NA protein to identify residues that affect NA enzymatic activity. To this end, recombinant soluble versions of four different NA proteins from H5N1 viruses were compared with their full-length counterparts. The soluble NA ectodomains were fused to three commonly used tetramerization domains. Our results indicate that the particular oligomerization domain used does not affect the K-m value but may affect the specific enzymatic activity. This particularly holds true when the stalk domain is included and for NA ectodomains that display a low intrinsic ability to oligomerize. NA ectodomains extended with a Tetrabrachion domain, which forms a nearly parallel four-helix bundle, better mimicked the enzymatic properties of full-length proteins than when other coiled-coil tetramerization domains were used, which probably distort the stalk domain. Comparison of different NA proteins and mutagenic analysis of recombinant soluble versions thereof resulted in the identification of several residues that affected oligomerization of the NA head domain (position 95) and therefore the specific activity or sialic acid binding affinity (K-m value; positions 252 and 347). This study demonstrates the potential of using recombinant soluble NA proteins to reveal determinants of NA assembly and enzymatic activity. IMPORTANCE The IAV HA and NA glycoproteins are important determinants of host tropism and pathogenicity. However, NA is relatively understudied compared to HA. Analysis of soluble versions of these glycoproteins is an attractive way to study their activities, as they are easily purified from cell culture media and applied in downstream assays. In the present study, we analyzed the enzymatic activity of different NA ectodomains with three commonly used tetramerization domains and compared them with fulllength NA proteins. By performing a mutagenic analysis, we identified several residues that affected NA assembly, activity, and/or substrate binding. In addition, our results indicate that the design of the recombinant soluble NA protein, including the particular tetramerization domain, is an important determinant for maintaining the enzymatic properties within the head domain. NA ectodomains extended with a Tetrabrachion domain better mimicked the full-length proteins than when the other tetramerization domains were used.
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
4.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
5.
  • Harms, Hendrik J., et al. (författare)
  • Noninvasive Quantification of Myocardial C-11-Meta-Hydroxyephedrine Kinetics
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:9, s. 1376-1381
  • Tidskriftsartikel (refereegranskat)abstract
    • C-11-meta-hydroxyephedrine (C-11-HED) kinetics in the myocardium can be quantified using a single-tissue-compartment model together with a metabolite-corrected arterial blood sampler input function (BSIF). The need for arterial blood sampling, however, limits clinical applicability. The purpose of this study was to investigate the feasibility of replacing arterial sampling with imaging-derived input function (IDIF) and venous blood samples. Methods: Twenty patients underwent 60-min dynamic C-11-HED PET/CT scans with online arterial blood sampling. Thirteen of these patients also underwent venous blood sampling. Data were reconstructed using both 3 dimensional row-action maximum-likelihood algorithm (3DR) and a time-of-flight (TF) list-mode reconstruction algorithm. For each reconstruction, IDIF results were compared with BSIF results. In addition, IDIF results obtained with venous blood samples and with a transformed venous-to-arterial metabolite correction were compared with results obtained with arterial metabolite corrections. Results: Correlations between IDIF- and BSIF-derived K-1 and V-T were high (r(2) > =0.89 for 3DR and TF). Slopes of the linear fits were significantly different from 1 for K-1, for both 3DR (slope = 0.94) and TF (slope = 1.06). For V-T, the slope of the linear fit was different from 1 for TF (slope = 0.93) but not for 3DR (slope = 0.98). Use of venous blood data introduced a large bias in V-T (r(2) = 0.96, slope = 0.84) and a small bias in K-1 (r(2) = 0.99, slope = 0.98). Use of a second-order polynomial venous-to-arterial transformation was robust and greatly reduced bias in V-T (r(2) = 0.97, slope = 0.99) with no effect on K-1. Conclusion: IDIF yielded precise results for both 3DR and TF. Venous blood samples can be used for absolute quantification of C-11-HED studies, provided a venous-to-arterial transformation is applied. A venous-to-arterial transformation enables noninvasive, absolute quantification of C-11-HED studies.
  •  
6.
  • Harms, Hendrik J, et al. (författare)
  • Use of a Single 11C-Meta-Hydroxyephedrine Scan for Assessing Flow-Innervation Mismatches in Patients with Ischemic Cardiomyopathy
  • 2015
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 56:11, s. 1706-1711
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Mismatch between areas of reduced myocardial blood flow (MBF) and reduced myocardial innervation (defect areas) may be used to estimate the risk for ventricular arrhythmias. The presence of a mismatch zone can be derived using a combined protocol consisting of both an MBF scan and an (11)C-meta-hydroxyephedrine ((11)C-HED) scan. The rate of influx from blood to myocardium (K1) of (11)C-HED is proportional to MBF and can potentially be used as an index for defining MBF defects. The aim of this study was to assess whether K1 derived from an (11)C-HED scan can be used as an index of MBF, potentially allowing for an assessment of MBF-innervation mismatch areas from a single (11)C-HED scan.METHODS: Seventeen patients with known ischemic cardiomyopathy underwent dynamic (15)O-water and (11)C-HED scans. Discrete arterial blood samples were taken during (11)C-HED scans for metabolite correction of the image-derived input function. (11)C-HED influx rate was obtained using a single-tissue-compartment model and compared with transmural MBF (MBFT), defined as MBF as measured with (15)O-water multiplied by perfusable tissue fraction. Defect sizes were obtained from parametric K1 and MBFT images, using 50% of a remote control segment as the cutoff value.RESULTS: There was a significant correlation between MBFT and K1 (y = 0.40x + 0.05 mL·g(-1)·min(-1), r = 0.80, P < 0.001), although K1 was significantly lower than MBFT (slope of the regression line significantly different from 1, P < 0.001). Correlation between MBFT and K1 defect sizes was high (y = 0.89x + 1.38%, r = 0.95, P < 0.001), with no significant difference in mean defect size based on K1 or MBFT (20.9% ± 11.3% and 20.1% ± 10.7% for MBFT and K1, respectively, P = 0.41).CONCLUSION: (11)C-HED influx rate K1 can be used as an alternative to a separate MBF scan for assessing mismatch areas between MBF and myocardial innervation.
  •  
7.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
8.
  • Seepers, Robert Mark, et al. (författare)
  • Attacks on Heartbeat-Based Security Using Remote Photoplethysmography
  • 2018
  • Ingår i: IEEE Journal of Biomedical and Health Informatics. - 2168-2194 .- 2168-2208. ; 22:3, s. 714-721
  • Tidskriftsartikel (refereegranskat)abstract
    • The time interval between consecutive heartbeats (interpulse interval, IPI) has previously been suggested for securing mobile-health solutions. This time interval is known to contain a degree of randomness, permitting the generation of a time-and person-specific identifier. It is commonly assumed that only devices trusted by a person can make physical contact with him/her, and that this physical contact allows each device to generate a similar identifier based on its own cardiac recordings. Under these conditions, the identifiers generated by different trusted devices can facilitate secure authentication. Recently, a wide range of techniques have been proposed for measuring heartbeats remotely, a prominent example of which is remote photoplethysmography (rPPG). These techniques may pose a significant threat to heartbeat-based security, as an adversary may pretend to be a trusted device by generating a similar identifier without physical contact, thus bypassing one of the core security conditions. In this paper, we assess the feasibility of such remote attacks using state-of-the-art rPPG methods. Our evaluation shows that rPPG has similar accuracy as contact PPG and, thus, forms a substantial threat to heartbeat-based-security systems that permit trusted devices to obtain their identifiers from contact PPG recordings. Conversely, rPPG cannot obtain an accurate representation of an identifier generated from electrical cardiac signals, making the latter invulnerable to state-of-the-art remote attacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Salomaa, Veikko (2)
Perola, Markus (2)
Lind, Lars (2)
Soranzo, Nicole (2)
Sattar, Naveed (2)
Deloukas, Panos (2)
visa fler...
Wareham, Nicholas J. (2)
Stancáková, Alena (2)
Kuusisto, Johanna (2)
Laakso, Markku (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Amin, Najaf (2)
Boehnke, Michael (2)
Mohlke, Karen L (2)
Scott, Robert A (2)
Zhao, Wei (2)
Tuomilehto, Jaakko (2)
Rotter, Jerome I. (2)
Strauch, Konstantin (2)
Lubberink, Mark (2)
Froguel, Philippe (2)
Metspalu, Andres (2)
Palmer, Colin N. A. (2)
Meitinger, Thomas (2)
Harris, Tamara B (2)
Launer, Lenore J (2)
Loos, Ruth J F (2)
Morris, Andrew D (2)
Rich, Stephen S (2)
Uitterlinden, André ... (2)
Psaty, Bruce M (2)
Hayward, Caroline (2)
Gudnason, Vilmundur (2)
Zeggini, Eleftheria (2)
Dupuis, Josée (2)
Pankow, James S. (2)
Boerwinkle, Eric (2)
Wilson, James G. (2)
Meigs, James B. (2)
Malerba, Giovanni (2)
Schuit, Robert C (2)
Lammertsma, Adriaan ... (2)
Wood, Andrew R (2)
Frayling, Timothy M (2)
Kardia, Sharon L R (2)
Collins, Francis S. (2)
Lindgren, Cecilia M. (2)
Morris, Andrew P. (2)
Lu, Yingchang (2)
visa färre...
Lärosäte
Uppsala universitet (4)
Umeå universitet (2)
Stockholms universitet (2)
Lunds universitet (2)
Karolinska Institutet (2)
Linköpings universitet (1)
visa fler...
Handelshögskolan i Stockholm (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy