SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deca J.) srt2:(2015-2019)"

Sökning: WFRF:(Deca J.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Innocenti, M. E., et al. (författare)
  • Progress towards physics-based space weather forecasting with exascale computing
  • 2017
  • Ingår i: Advances in Engineering Software. - : Elsevier. - 0965-9978 .- 1873-5339. ; 111, s. 3-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Space weather is a rapidly growing field of science which studies processes occurring in the area of space between the Sun and the Earth. The development of space weather forecasting capabilities is a task of great societal relevance: space weather effects may damage a number of technological assets, among which power and communication lines, transformers, pipelines and the telecommunication infrastructure. Exascale computing is a fundamental ingredient for space weather forecasting tools based on physical, rather than statistical, models. We describe here our recent progresses towards a physics-based space weather forecasting tool with exascale computing. We select the semi-implicit, Particle In Cell, Implicit Moment Method implemented in the parallel, object-oriented, C++ iPic3D code as a promising starting point. We analyze the structure and the performances of the current version of the iPic3D code. We describe three algorithmic developments, the fully implicit method, the Multi-Level Multi-Domain method, and the fluid-kinetic method, which can help addressing the multiple spatial and temporal scales present in space weather simulations. We then examine, in a co-design approach, which requirements - vectorization, extreme parallelism and reduced communication - an application has to satisfy to fully exploit architectures such as GPUs and Xeon Phi's. We address how to modify the iPic3D code to better satisfy these requirements. We then describe how to port the iPic3D code to the DEEP architecture currently under construction. The FP7 project DEEP (www.deep-project.eu) aims at building an exascale-ready machine composed of a cluster of Xeon nodes and of a collection of Xeon Phi coprocessors, used as boosters. The aim of the DEEP project is to enable exascale performance for codes, such as iPic3D, composed of parts which exhibit different potential for extreme scalability. Finally, we provide examples of simulations of space weather processes done with the current version of the iPic3D code.
  •  
2.
  • Vapirev, A., et al. (författare)
  • Initial results on computational performance of Intel many integrated core, sandy bridge, and graphical processing unit architectures : implementation of a 1D c++/OpenMP electrostatic particle-in-cell code
  • 2015
  • Ingår i: Concurrency and Computation. - : Wiley. - 1532-0626 .- 1532-0634. ; 27:3, s. 581-593
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial comparison performance results for Intel many integrated core (MIC), Sandy Bridge (SB), and graphical processing unit (GPU). A 1D explicit electrostatic particle-in-cell code is used to simulate a two-stream instability in plasma. We compare the computation times for various number of cores/threads and compiler options. The parallelization is implemented via OpenMP with a maximum thread number of 128. Parallelization and vectorization on the GPU is achieved with modifying the code syntax for compatibility with CUDA. We assess the speedup due to various auto-vectorization and optimization level compiler options. Our results show that the MIC is several times slower than SB for a single thread, and it becomes faster than SB when the number of cores increases with vectorization switched on. The compute times for the GPU are consistently about six to seven times faster than the ones for MIC. Compared with SB, the GPU is about two times faster for a single thread and about an order of magnitude faster for 128 threads. The net speedup, however, for MIC and GPU are almost the same. An initial attempt to offload parts of the code to the MIC coprocessor shows that there is an optimal number of threads where the speedup reaches a maximum.
  •  
3.
  • Behar, Etienne, et al. (författare)
  • Solar wind dynamics around a comet : A 2D semi-analytical kinetic model
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.We aim at analytically modelling the solar wind proton trajectories during their interaction with a partially ionised cometaryatmosphere, not in terms of bulk properties of the flow but in terms of single particle dynamics.Methods.We first derive a generalised gyromotion, in which the electric field is reduced to its motional component. Steady-stateis assumed, and simplified models of the cometary density and of the electron fluid are used to express the force experienced byindividual solar wind protons during the interaction.Results.A three-dimensional (3D) analytical expression of the gyration of two interacting plasma beams is obtained. Applying it to acomet case, the force on protons is always perpendicular to their velocity and has an amplitude proportional to 1/r2. The solar winddeflection is obtained at any point in space. The resulting picture presents a caustic of intersecting trajectories, and a circular regionis found that is completely free of particles. The particles do not lose any kinetic energy and this absence of deceleration, togetherwith the solar wind deflection pattern and the presence of a solar wind ion cavity, is in good agreement with the general results of theRosettamission.Conclusions.The qualitative match between the model and thein situdata highlights how dominant the motional electric field isthroughout most of the interaction region for the solar wind proton dynamics. The model provides a simple general kinetic descriptionof how momentum is transferred between these two collisionless plasmas. It also shows the potential of this semi-analytical modelfor a systematic quantitative comparison to the data.
  •  
4.
  • Divin, A., et al. (författare)
  • A new model for the electron pressure nongyrotropy in the outer electron diffusion region
  • 2016
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 43:20, s. 10565-10573
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new model to describe the electron pressure nongyrotropy inside the electron diffusion region (EDR) in an antiparallel magnetic reconnection scenario. A combination of particle-in-cell simulations and analytical estimates is used to identify such a component of the electron pressure tensor in the rotated coordinates, which is nearly invariant along the outflow direction between the X line and the electron remagnetization points in the outer EDR. It is shown that the EDR two-scale structure (inner and outer parts) is formed due to superposition of the nongyrotropic meandering electron population and gyrotropic electron population with large anisotropy parallel to the magnetic field upstream of the EDR. Inside the inner EDR the influence of the pressure anisotropy can largely be ignored. In the outer EDR, a thin electron layer with electron flow speed exceeding the E x B drift velocity is supported by large-momentum flux produced by the electron pressure anisotropy upstream of the EDR. We find that this fast electron exhaust flow with |V(e)xB|>|E| is in fact a constituent part of the EDR, a finding which will steer the interpretation of the Magnetospheric Multiscale Mission (MMS) data.
  •  
5.
  • Divin, A., et al. (författare)
  • Inner and outer electron diffusion region of antiparallel collisionless reconnection : Density dependence
  • 2019
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 26:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We study inflow density dependence of substructures within electron diffusion region (EDR) of collisionless symmetric magnetic reconnection. We perform a set of 2.5D particle-in-cell simulations which start from a Harris current layer with a uniform background density n(b). A scan of n(b) ranging from 0:02 n(0) to 2 n(0) of the peak current layer density (n(0)) is studied keeping other plasma parameters the same. Various quantities measuring reconnection rate, EDR spatial scales, and characteristic velocities are introduced. We analyze EDR properties during quasisteady stage when the EDR length measures saturate. Consistent with past kinetic simulations, electrons are heated parallel to the B field in the inflow region. The presence of the strong parallel anisotropy acts twofold: (1) electron pressure anisotropy drift gets important at the EDR upstream edge in addition to the E x B drift speed and (2) the pressure anisotropy term -del.P-(e)/(ne) modifies the force balance there. We find that the width of the EDR demagnetization region and EDR current are proportional to the electron inertial length similar to d(e) and similar to d(e)n(b)(0.22), respectively. Magnetic reconnection is fast with a rate of similar to 0.1 but depends weakly on density as similar to n(b)(-1/8). Such reconnection rate proxies as EDR geometrical aspect or the inflow-to-outflow electron velocity ratio are shown to have different density trends, making electric field the only reliable measure of the reconnection rate. Published under license by AIP Publishing.
  •  
6.
  • Myllys, M., et al. (författare)
  • Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 630
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance.Aims: In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission.Methods: The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature.Results: The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance.Conclusions: We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy