SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deguchi T) srt2:(2020-2022)"

Sökning: WFRF:(Deguchi T) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Isobe, T, et al. (författare)
  • Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4501-
  • Tidskriftsartikel (refereegranskat)abstract
    • KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.
  •  
2.
  •  
3.
  • Deguchi, T, et al. (författare)
  • Density and function of actin-microdomains in healthy and NF1 deficient osteoclasts revealed by the combined use of atomic force and stimulated emission depletion microscopy
  • 2020
  • Ingår i: JOURNAL OF PHYSICS D-APPLIED PHYSICS. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 53:1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Actin and myosins (IIA, IIB, and X) generate mechanical forces in osteoclasts that drive functions such as migration and membrane trafficking. In neurofibromatosis, these processes are perturbed due to a mutation in neurofibromatosis type 1 (NF1) gene. This mutation leads to generation of hyperactive bone-resorbing osteoclasts that increases incidence of skeletal dysplasia e.g. early-onset osteoporosis in patients suffering from neurofibromatosis. To study the density and function of actin clusters in mutated cells we introduce a new approach for combined use of a stimulated emission depletion (STED) microscope with an atomic force microscope (AFM). We resolved actin-cores within actin-microdomains at four typical structures (podosome-belt, podosome raft, actin patches, and sealing zone) for osteoclasts cultured on bone as well as on glass. Densities of actin-cores in these structures were higher on bone than on glass, and the nearest neighbor distances were shortest in sealing zones, where also an accumulation of vesicular material was observed at their center. In NF1 deficient osteoclasts, the clustering was tighter and there was also more vesicular material accumulated inside the sealing zone. Using the STED-AFM system, we measured the condensation of the actin structures in real-time after a bone-coated cantilever was placed in contact with a differentiated osteoclast and found that the condensation of actin was initiated at 40 min, after sufficient local actin concentration was reached. A functional implication of the less dense clustering in NF1 deficient cells was that the adhesion of these cells was less specific for bone. The data and new methodologies presented here build a foundation for establishing novel actomyosin dependent mechanisms during osteoclast migration and resorption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy