SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delabie E) srt2:(2020-2023)"

Sökning: WFRF:(Delabie E) > (2020-2023)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Hobirk, J., et al. (författare)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
6.
  •  
7.
  • Mantsinen, M. J., et al. (författare)
  • Experiments in high-performance JET plasmas in preparation of second harmonic ICRF heating of tritium in ITER
  • 2023
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 63:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The reference ion cyclotron resonance frequency (ICRF) heating schemes for ITER deuterium-tritium (D-T) plasmas at the full magnetic field of 5.3 T are second harmonic heating of T and 3He minority heating. The wave-particle resonance location for these schemes coincide and are central at a wave frequency of 53 MHz at 5.3 T. Experiments have been carried out in the second major D-T campaign (DTE2) at JET, and in its prior D campaigns, to integrate these ICRF scenarios in JET high-performance plasmas and to compare their performance with the commonly used hydrogen (H) minority heating. In 50:50 D:T plasmas, up to 35% and 5% larger fusion power and diamagnetic energy content, respectively, were obtained with second harmonic heating of T as compared to H minority heating at comparable total input powers and gas injection rates. The core ion temperature was up to 30% and 20% higher with second harmonic T and 3He minority heating, respectively, with respect to H minority heating. These are favourable results for the use of these scenarios in ITER and future fusion reactors. According to modelling, adding ICRF heating to neutral beam injection using D and T beams resulted in a 10%-20% increase of on-axis bulk ion heating in the D-T plasmas due to its localisation in the plasma core. Central power deposition was confirmed with the break-in-slope and fast Fourier transform analysis of ion and electron temperature in response to ICRF modulation. The tail temperature of fast ICRF-accelerated tritons, their enhancement of the fusion yield and time behaviour as measured by an upgraded magnetic proton recoil spectrometer and neutral particle analyser were found in agreement with theoretical predictions. No losses of ICRF-accelerated ions were observed by fast ion detectors, which was as expected given the high plasma density of n e approximate to 7-8 x 1019 m-3 in the main heating phase that limited the formation of ICRF-accelerated fast ion tails. 3He was introduced in the machine by 3He gas injection, and the 3He concentration was measured by a high-resolution optical penning gauge in the sub-divertor region. The DTE2 experiments with 3He minority heating were carried with a low 3He concentration in the range of 2%-4% given the fact that the highest neutron rates with 3He minority heating in D plasmas were obtained at low 3He concentrations of similar to 2%, which also coincided with the highest plasma diamagnetic energy content. In addition to 3He introduced by 3He gas injection, an intrinsic concentration of 3He of the order of 0.2%-0.4% was measured in D-T plasmas before 3He was introduced in the device, which is attributed to the radioactive decay of tritium to 3He. According to modelling, even such low intrinsic concentrations of 3He lead to significant changes in ICRF power partitioning during second harmonic heating of T due to absorption of up to 30% of the wave power by 3He.
  •  
8.
  •  
9.
  • Tala, T., et al. (författare)
  • Role of NBI fuelling in contributing to density peaking between the ICRH and NBI identity plasmas on JET
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Density peaking has been studied between an ICRH and NBI identity plasma in JET. The comparison shows that 8 MW of NBI heating/fueling increases the density peaking by a factor of two, being R/L (n) = 0.45 for the ICRH pulse and R/L (n) = 0.93 for the NBI one averaged radially over rho (tor) = 0.4, 0.8. The dimensionless profiles of q, rho *, upsilon *, beta (n) and T (i)/T (e) approximate to 1 were matched within 5% difference except in the central part of the plasma (rho (tor) < 0.3). The difference in the curvature pinch (same q-profile) and thermo-pinch (T (i) = T (e)) between the ICRH and NBI discharges is virtually zero. Both the gyro-kinetic simulations and integrated modelling strongly support the experimental result where the NBI fuelling is the main contributor to the density peaking for this identity pair. It is to be noted here that the integrated modeling does not reproduce the measured electron density profiles, but approximately reproduces the difference in the density profiles between the ICRH and NBI discharge. Based on these modelling results and the analyses, the differences between the two pulses in impurities, fast ions (FIs), toroidal rotation and radiation do not cause any such changes in the background transport that would invalidate the experimental result where the NBI fuelling is the main contributor to the density peaking. This result of R/L (n) increasing by a factor of 2 per 8 MW of NBI power is valid for the ion temperature gradient dominated low power H-mode plasmas. However, some of the physics processes influencing particle transport, like rotation, turbulence and FI content scale with power, and therefore, the simple scaling on the role of the NBI fuelling in JET is not necessarily the same under higher power conditions or in larger devices.
  •  
10.
  • Horvath, L., et al. (författare)
  • Isotope dependence of the type I ELMy H-mode pedestal in JET-ILW hydrogen and deuterium plasmas
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 61:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The pedestal structure, edge transport and linear MHD stability have been analyzed in a series of JET with the ITER-like wall hydrogen (H) and deuterium (D) type I ELMy H-mode plasmas. The pedestal pressure is typically higher in D than in H at the same input power and gas rate, with the difference mainly due to lower density in H than in D (Maggi et al (JET Contributors) 2018 Plasma Phys. Control. Fusion 60 014045). A power balance analysis of the pedestal has shown that higher inter-ELM separatrix loss power is required in H than in D to maintain a similar pedestal top pressure. This is qualitatively consistent with a set of interpretative EDGE2D-EIRENE simulations for H and D plasmas, showing that higher edge particle and heat transport coefficients are needed in H than in D to match the experimental profiles. It has also been concluded that the difference in neutral penetration between H and D leads only to minor changes in the upstream density profiles and with trends opposite to experimental observations. This implies that neutral penetration has a minor role in setting the difference between H and D pedestals, but higher ELM and/or inter-ELM transport are likely to be the main players. The interpretative EDGE2D-EIRENE simulations, with simultaneous upstream and outer divertor target profile constraints, have indicated higher separatrix electron temperature in H than in D for a pair of discharges at low fueling gas rate and similar stored energy (which required higher input power in H than in D at the same gas rate). The isotope dependence of linear MHD pedestal stability has been found to be small, but if a higher separatrix temperature is considered in H than in D, this could lead to destabilization of peeling-ballooning modes and shrinking of the stability boundary, qualitatively consistent with the reduced pedestal confinement in H.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy