SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Demosthenous M)
 

Sökning: WFRF:(Demosthenous M) > (2015-2019) > Compressive sensing...

Compressive sensing in electrical impedance tomography for breathing monitoring

Shiraz, A. (författare)
Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
Khodadad, Davood, 1985- (författare)
Örebro universitet,Institutionen för naturvetenskap och teknik,Department of Mechanical Engineering, Örebro University, Örebro, Sweden
Nordebo, Sven, 1963- (författare)
Linnéuniversitetet,Institutionen för fysik och elektroteknik (IFE),Department of Physics and Electrical Engineering, Linnaeus University, Växjö, Sweden
visa fler...
Yerworth, R. (författare)
Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
Frerichs, I (författare)
Univ Med Ctr Schleswig Holstein, Germany,Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Kiel, Germany
van Kaam, A. (författare)
Emma Childrens Hosp, Netherlands;Vrije Univ Amsterdam Med Ctr, Netherlands,Department of Neonatology, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands; Department of Neonatology, VU Medical Center, Amsterdam, The Netherlands
Kallio, M. (författare)
PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Finland
Papadouri, T. (författare)
Minist Hlth, Cyprus
Bayford, R. (författare)
University College London, UK;Middlesex Univ, UK,Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
Demosthenous, A. (författare)
Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
visa färre...
 (creator_code:org_t)
2019-04-03
2019
Engelska.
Ingår i: Physiological Measurement. - : Institute of Physics Publishing (IOPP). - 0967-3334 .- 1361-6579. ; 40:3, s. 1-9
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Objective: Electrical impedance tomography (EIT) is a functional imaging technique in which cross-sectional images of structures are reconstructed based on boundary trans-impedance measurements. Continuous functional thorax monitoring using EIT has been extensively researched. Increasing the number of electrodes, number of planes and frame rate may improve clinical decision making. Thus, a limiting factor in high temporal resolution, 3D and fast EIT is the handling of the volume of raw impedance data produced for transmission and its subsequent storage. Owing to the periodicity (i.e. sparsity in frequency domain) of breathing and other physiological variations that may be reflected in EIT boundary measurements, data dimensionality may be reduced efficiently at the time of sampling using compressed sensing techniques. This way, a fewer number of samples may be taken. Approach: Measurements using a 32-electrode, 48-frames-per-second EIT system from 30 neonates were post-processed to simulate random demodulation acquisition method on 2000 frames (each consisting of 544 measurements) for compression ratios (CRs) ranging from 2 to 100. Sparse reconstruction was performed by solving the basis pursuit problem using SPGL1 package. The global impedance data (i.e. sum of all 544 measurements in each frame) was used in the subsequent studies. The signal to noise ratio (SNR) for the entire frequency band (0 Hz-24 Hz) and three local frequency bands were analysed. A breath detection algorithm was applied to traces and the subsequent errorrates were calculated while considering the outcome of the algorithm applied to a down-sampled and linearly interpolated version of the traces as the baseline. Main results: SNR degradation was generally proportional with CR. The mean degradation for 0 Hz-8 Hz (of interest for the target physiological variations) was below similar to 15 dB for all CRs. The error-rates in the outcome of the breath detection algorithm in the case of decompressed traces were lower than those associated with the corresponding down-sampled traces for CR >= 25, corresponding to sub-Nyquist rate for breathing frequency. For instance, the mean error-rate associated with CR = 50 was similar to 60% lower than that of the corresponding down-sampled traces. Significance: To the best of our knowledge, no other study has evaluated the applicability of compressive sensing techniques on raw boundary impedance data in EIT. While further research should be directed at optimising the acquisition and decompression techniques for this application, this contribution serves as the baseline for future efforts.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Annan medicin och hälsovetenskap -- Övrig annan medicin och hälsovetenskap (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Other Medical and Health Sciences -- Other Medical and Health Sciences not elsewhere specified (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Signalbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Signal Processing (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk bildbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Image Processing (hsv//eng)

Nyckelord

breath detection
compressive sensing
electrical impedance tomography
Computer Science
Datavetenskap

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy