SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Denmead Lisa H.) srt2:(2017)"

Sökning: WFRF:(Denmead Lisa H.) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, Andrew D., et al. (författare)
  • Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity
  • 2017
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1:10, s. 1511-1519
  • Tidskriftsartikel (refereegranskat)abstract
    • The conversion of tropical rainforest to agricultural systems such as oil palm alters biodiversity across a large range of interacting taxa and trophic levels. Yet, it remains unclear how direct and cascading effects of land-use change simultaneously drive ecological shifts. Combining data from a multi-taxon research initiative in Sumatra, Indonesia, we show that direct and cascading land-use effects alter biomass and species richness of taxa across trophic levels ranging from microorganisms to birds. Tropical land use resulted in increases in biomass and species richness via bottom-up cascading effects, but reductions via direct effects. When considering direct and cascading effects together, land use was found to reduce biomass and species richness, with increasing magnitude at higher trophic levels. Our analyses disentangle the multifaceted effects of land-use change on tropical ecosystems, revealing that biotic interactions on broad taxonomic scales influence the ecological outcome of anthropogenic perturbations to natural ecosystems.
  •  
2.
  • Denmead, Lisa H., et al. (författare)
  • The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations
  • 2017
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 98:7, s. 1945-1956
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators.
  •  
3.
  • Ganser, Dominik, et al. (författare)
  • Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils
  • 2017
  • Ingår i: Agricultural and Forest Entomology. - : Wiley. - 1461-9555. ; 19:1, s. 60-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Oil palm expansion results in a loss of biodiversity and associated ecosystem services. However, there are factors that influence the severity of these impacts and enhancing biodiversity within plantations is important. In the present study, we examined the role of epiphytes for supporting arthropod communities in oil palm plantations in Sumatra, Indonesia. We considered the effects of landscape context and local characteristics (epiphyte cover, herbicide use and local microclimate) on arthropod communities and litter decomposition in oil palm leaf axils. We surveyed arthropods and measured decomposition rates at two different heights on 80 oil palms located at the centre and edge of eight plantations. We found that oil palms at the edge of plantations hosted a higher abundance and more arthropod taxa than oil palms in the centre of plantations. Moreover, organic matter mass and height of the leaf axil were important for arthropod communities, and the decomposition rate was negatively related to ant abundance. However, epiphyte cover did not influence arthropod communities. The results of the present study show that leaf axils with more organic matter and at a higher location on the oil palm promote arthropod biodiversity. Furthermore, oil palm plantations adjacent to different land-use systems have enhanced biodiversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy