SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dermer E) srt2:(2015)"

Sökning: WFRF:(Dermer E) > (2015)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackermann, M., et al. (författare)
  • The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:1, s. 86-
  • Tidskriftsartikel (refereegranskat)abstract
    • The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 +/- 0.02 and a break energy of (279 +/- 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 +/- 0.6) x 10(-6) cm(-2) s(-1) sr(-1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.
  •  
2.
  • Abdo, A. A., et al. (författare)
  • Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope ( LAT) on board the FermiGamma- ray Space Telescope routinely detects the MeV- peaked flat- spectrum radio quasar PKS 1830- 211 ( z = 2.507). Its apparent isotropic. - ray luminosity ( E > 100 MeV), averaged over 3 years of observations and peaking on 2010 October 14/ 15 at 2.9 x 1050 erg s- 1, makes it among the brightest high- redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time- delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large. - ray flares of PKS 1830- 211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the. - ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X- ray flux with the. - ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and. - ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy- dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
  •  
3.
  • Ackermann, M., et al. (författare)
  • Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background
  • 2015
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :9
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor similar to 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy