SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Desert J. M.) srt2:(2020-2024)"

Sökning: WFRF:(Desert J. M.) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results I. Overview and the cosmological legacy of Planck
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  •  
2.
  • Bell, Taylor, et al. (författare)
  • Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.
  •  
3.
  • Adam, R. M., et al. (författare)
  • The XXL Survey: LI. Pressure profile and Y SZ -M scaling relation in three low-mass galaxy clusters at z∼1 observed with NIKA2
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The thermodynamical properties of the intracluster medium (ICM) are driven by scale-free gravitational collapse, but they also reflect the rich astrophysical processes at play in galaxy clusters. At low masses (∼1014M) and high redshift (z≳1), these properties remain poorly constrained, observationally speaking, due to the difficulty in obtaining resolved and sensitive data. Aims. We aim to investigate the inner structure of the ICM as seen through the Sunyaev-Zel’dovich (SZ) effect in this regime of mass and redshift. We focused on the thermal pressure profile and the scaling relation between SZ flux and mass, namely the YSZ-M scaling relation. Methods. The three galaxy clusters XLSSC 072 (z=1.002), XLSSC 100 (z=0.915), and XLSSC 102 (z=0.969), with M500∼2×1014M, were selected from the XXL X-ray survey and observed with the NIKA2 millimeter camera to image their SZ signal. XMM-Newton X-ray data were used as a complement to the NIKA2 data to derive masses based on the YX-M relation and the hydrostatic equilibrium. Results. The SZ images of the three clusters, along with the X-ray and optical data, indicate dynamical activity related to merging events. The pressure profile is consistent with that expected for morphologically disturbed systems, with a relatively flat core and a shallow outer slope. Despite significant disturbances in the ICM, the three high-redshift low-mass clusters follow the YSZ-M relation expected from standard evolution remarkably well. Conclusions. These results indicate that the dominant physics that drives cluster evolution is already in place by z∼1, at least for systems with masses above M500∼1014M.
  •  
4.
  • Ricci, M., et al. (författare)
  • The XXL Survey: XLIV. Sunyaev-Zel'dovich mapping of a low-mass cluster at z ∼1: A multi-wavelength approach
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel'dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M·) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid.
  •  
5.
  • Powell, Diana, et al. (författare)
  • Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 626:8001, s. 979-983
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1–3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1–10 ppm)4–9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5–12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5–25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1–8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.
  •  
6.
  • Van Cuyck, M., et al. (författare)
  • CONCERTO : Extracting the power spectrum of the [CII] emission line
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 676
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. CONCERTO is the first experiment to perform a [CII] line intensity mapping (LIM) survey on the COSMOS field to target z > 5.2. Measuring the [CII] angular power spectrum allows us to study the role of dusty star-forming galaxies in the star formation history during the epochs of Reionization and post-Reionization. The main obstacle to this measurement is the contamination by bright foregrounds: the dust continuum emission and atomic and molecular lines from foreground galaxies at z ≲ 3.Aims. We evaluate our ability to retrieve the [CII] signal in mock observations of the sky using the Simulated Infrared Dusty Extragalactic Sky (SIDES), which covers the mid-infrared to millimetre range. We also measure the impact of field-to-field variance on the residual foreground contamination.Methods. We compared two methods for dealing with the dust continuum emission from galaxies (i.e. the cosmic infrared background fluctuations): the standard principal component analysis (PCA) and the asymmetric re-weighted penalized least-squares (arPLS) method. For line interlopers, the strategy relies on masking low-redshift galaxies using the instrumental beam profile and external catalogues. As we do not have observations of CO or deep-enough classical CO proxies (such as LIR), we relied on the COSMOS stellar mass catalogue, which we demonstrate to be a reliable CO proxy for masking. To measure the angular power spectrum of masked data, we adapted the P of K EstimatoR (POKER) from cosmic infrared background studies and discuss its use on LIM data.Results. The arPLS method achieves a reduction in the cosmic infrared background fluctuations to a sub-dominant level of the [CII] power at z ∼ 7, a factor of > 70 below our fiducial [CII] model. When using the standard PCA, this factor is only 0.7 at this redshift. The masking lowers the power amplitude of line contamination down to 2 × 10−2 Jy2 sr−1. This residual level is dominated by faint undetected sources that are not clustered around the detected (and masked) sources. For our [CII] model, this results in a detection at z = 5.2 with a power ratio [CII]/(residual interlopers) = 62 ± 32 for a 22% area survey loss. However, at z = 7, [CII]/(residual interlopers) = 2.0 ± 1.4, due to the weak contrast between [CII] and the residual line contamination. Thanks to the large area covered by SIDES-Uchuu, we show that the power amplitude of line residuals varies by 12–15% for z = 5.2 − 7, which is less than the field-to-field variance affecting [CII] power spectra.Conclusions. We present an end-to-end simulation of the extragalactic foreground removal that we ran to detect the [CII] at high redshift via its angular power spectrum. We show that cosmic infrared background fluctuations are not a limiting foreground for [CII] LIM. On the contrary, the CO and [CI] line contamination severely limits our ability to accurately measure the [CII] angular power spectrum at z ≳ 7.
  •  
7.
  • Wiedner, M.C., et al. (författare)
  • Origins space telescope: from first light to life
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 595-624
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope (Origins) is one of four science and technology definition studies selected by the National Aeronautics and Space Administration (NASA) in preparation of the 2020 Astronomy and Astrophysics Decadal survey in the US. Origins will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. It is designed to answer three major science questions: How do galaxies form stars, make metals, and grow their central supermassive black holes from reionization? How do the conditions for habitability develop during the process of planet formation? Do planets orbiting M-dwarf stars support life? Origins operates at mid- to far-infrared wavelengths from ~ 2.8 μm to 588 μm, and is more than 1000 times more sensitive than prior far-IR missions due to its cold (~ 4.5 K) aperture and state-of-the-art instruments.
  •  
8.
  • Rofors, E., et al. (författare)
  • Response of a Li-glass/multi-anode photomultiplier detector to focused proton and deuteron beams
  • 2020
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 984
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of a position-sensitive Li-glass based scintillation detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using focused beams of 2.5MeV protons and deuterons. The beams were scanned across the detector in 0.5 mm horizontal and vertical steps perpendicular to the beams. Scintillation light was registered using an 8 × 8 pixel multi-anode photomultiplier tube. The signal amplitudes were recorded for each pixel on an event-by-event basis. Several pixels generally registered considerable signals at each beam location. To optimize planned detector operation at the European Spallation Source, the number of pixels above set thresholds was investigated, with the maximization of the single-hit efficiency over the largest possible area as the primary goal. For both beams, at a threshold of ∼50% of the mean of the full-deposition peak, ∼80% of the events were registered in a single pixel, resulting in an effective position resolution of ∼5 mm in X and Y. Lower thresholds resulted in higher pixel multiplicities. These events could also be localized with the same effective position resolution.
  •  
9.
  • Jacobs, B., et al. (författare)
  • A strong H-opacity signal in the near-infrared emission spectrum of the ultra-hot Jupiter KELT-9b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the analysis of a spectroscopic secondary eclipse of the hottest transiting exoplanet detected to date, KELT-9b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We complement these data with literature information on stellar pulsations and Spitzer/Infrared Array Camera and Transiting Exoplanet Survey Satellite eclipse depths of this target to obtain a broadband thermal emission spectrum. Our extracted spectrum exhibits a clear turnoff at 1.4 μm. This points to H- bound-free opacities shaping the spectrum. To interpret the spectrum, we perform grid retrievals of self-consistent 1D equilibrium chemistry forward models, varying the composition and energy budget. The model with solar metallicity and C/O ratio provides a poor fit because the H- signal is stronger than expected, requiring an excess of electrons. This pushes our retrievals toward high atmospheric metallicities ([M/H] = 1.98-0.21+0.19) and a C/O ratio that is subsolar by 2.4σ. We question the viability of forming such a high-metallicity planet, and therefore provide other scenarios to increase the electron density in this atmosphere. We also look at an alternative model in which we quench TiO and VO. This fit results in an atmosphere with a slightly subsolar metallicity and subsolar C/O ratio ([M/H] = -0.22-0.13+0.17, log (C/O) = -0.34-0.34+0.19). However, the required TiO abundances are disputed by recent high-resolution measurements of the same planet.
  •  
10.
  • Rofors, E., et al. (författare)
  • Response of a Li-glass/multi-anode photomultiplier detector to collimated thermal-neutron beams
  • 2021
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 999
  • Tidskriftsartikel (refereegranskat)abstract
    • The response of a position-sensitive Li-glass scintillator detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using collimated beams of thermal neutrons. The detector was moved perpendicularly through the neutron beams in 0.5 to 1.0 mm horizontal and vertical steps. Scintillation was detected in an 8 × 8 pixel multi-anode photomultiplier tube on an event-by-event basis. In general, several pixels registered large signals at each neutron-beam location. The number of pixels registering signal above a set threshold was investigated, with the maximization of the single-hit efficiency over the largest possible area of the detector as the primary goal. At a threshold of ∼50% of the mean of the full-deposition peak, ∼80% of the events were registered in a single pixel, resulting in an effective position resolution of ∼5 mm in X and Y. Lower thresholds generally resulted in events demonstrating higher pixel multiplicities, but these events could also be localized with ∼5 mm position resolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy