SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Diao Xingxing) srt2:(2017)"

Sökning: WFRF:(Diao Xingxing) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlier, Jeremy, et al. (författare)
  • In Vitro Metabolite Profiling of ADB-FUBINACA, A New Synthetic Cannabinoid
  • 2017
  • Ingår i: Current Neuropharmacology. - : BENTHAM SCIENCE PUBL LTD. - 1570-159X .- 1875-6190. ; 15:5, s. 682-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Metabolite profiling of novel psychoactive substances (NPS) is critical for documenting drug consumption. N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1-Hindazole-3-carboxamide (ADB-FUBINACA) is an emerging synthetic cannabinoid whose toxicological and metabolic data are currently unavailable. Methods: We aimed to determine optimal markers for identifying ADB-FUBINACA intake. Metabolic stability was evaluated with human liver microsome incubations. Metabolites were identified after 1 and 3 h incubation with pooled human hepatocytes, liquid chromatography-high resolution mass spectrometry in positive-ion mode (5600(+) TripleTOF (R), Sciex) and several data mining approaches (MetabolitePilot (TM), Sciex). Results: Metabolite separation was achieved on an Ultra Biphenyl column (Restek (R)); full-scan TOF-MS and information-dependent acquisition MS/MS data were acquired. ADB-FUBINACA microsomal half-life was 39.7 min, with a predicted hepatic clearance of 9.0 mL/min/kg and a 0.5 extraction ratio (intermediate-clearance drug). Twenty-three metabolites were identified. Major metabolic pathways were alkyl and indazole hydroxylation, terminal amide hydrolysis, subsequent glucuronide conjugations, and dehydrogenation. Conclusion: We recommend ADB-FUBINACA hydroxyalkyl, hydroxydehydroalkyl and hydroxylindazole metabolites as ADB-FUBINACA intake markers. N-dealkylated metabolites are not specific ADB-FUBINACA metabolites and should not be used as definitive markers of consumption. This is the first ADB-FUBINACA in vitro metabolism study; in vivo experiments enabling pharmacokinetic and pharmacodynamics studies or urine from authentic clinical/forensic cases are needed to confirm our results.
  •  
2.
  • Diao, Xingxing, et al. (författare)
  • In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201)
  • 2017
  • Ingår i: Forensic Toxicology. - : SPRINGER. - 1860-8965 .- 1860-8973. ; 35:1, s. 20-32
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2014, NM-2201 (CBL-2201), a novel synthetic cannabinoid (SC), was detected by scientists at Russian and US laboratories. It has been already added to the list of scheduled drugs in Japan, Sweden and Germany. Unfortunately, no human metabolism data are currently available, which makes it challenging to confirm its intake, especially given that all SCs investigated thus far have been found to be extensively metabolized. The present study aims to recommend appropriate marker metabolites by investigating NM-2201 metabolism in human hepatocytes, and to confirm the results in authentic human urine specimens. For the metabolic stability assay, 1 A mu M NM-2201 was incubated in human liver microsomes (HLMs) for up to 1 h; for metabolite profiling, 10 A mu M of NM-2201 was incubated in human hepatocytes for 3 h. Two authentic urine specimens from NM-2201-positive cases were subjected to beta-glucuronidase hydrolysis prior to analysis. The identification of metabolites in hepatocyte samples and urine specimens was achieved with high-resolution mass spectrometry via information-dependent acquisition. NM-2201 was quickly metabolized in HLMs, with an 8.0-min half-life. In human hepatocyte incubation samples, a total of 13 NM-2201 metabolites were identified, generated mainly from ester hydrolysis and further hydroxylation, oxidative defluorination and subsequent glucuronidation. M13 (5-fluoro PB-22 3-carboxyindole) was found to be the major metabolite. In the urine specimens, the parent drug NM-2201 was not detected; M13 was the predominant metabolite after beta-glucuronidase hydrolysis. Therefore, based on the results of our study, we recommend M13 as a suitable urinary marker metabolite for confirming NM-2201 and/or 5F-PB-22 intake.
  •  
3.
  • Wohlfarth, Ariane, et al. (författare)
  • 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry.
  • 2017
  • Ingår i: Drug Testing and Analysis. - : John Wiley & Sons. - 1942-7603 .- 1942-7611. ; 9:5, s. 680-698
  • Tidskriftsartikel (refereegranskat)abstract
    • 25C-NBOMe and 25I-NBOMe are potent hallucinogenic drugs that recently emerged as new psychoactive substances. To date, a few metabolism studies were conducted for 25I-NBOMe, whereas 25C-NBOMe metabolism data are scarce. Therefore, we investigated the metabolic profile of these compounds in human hepatocytes, an in vivo mouse model and authentic human urine samples from forensic cases. Cryopreserved human hepatocytes were incubated for 3 h with 10 μM 25C-NBOMe and 25I-NBOMe; samples were analyzed by liquid chromatography high-resolution mass spectrometry (LC-HRMS) on an Accucore C18 column with a Thermo QExactive; data analysis was performed with Compound Discoverer software (Thermo Scientific). Mice were administered 1.0 mg drug/kg body weight intraperitoneally, urine was collected for 24 h and analyzed (with or without hydrolysis) by LC-HRMS on an Acquity HSS T3 column with an Agilent 6550 QTOF; data were analyzed manually and with WebMetabase software (Molecular Discovery). Human urine samples were analyzed similarly. In vitro and in vivo results matched well. 25C-NBOMe and 25I-NBOMe were predominantly metabolized by O-demethylation, followed by O-di-demethylation and hydroxylation. All methoxy groups could be demethylated; hydroxylation preferably occurred at the NBOMe ring. Phase I metabolites were extensively conjugated in human urine with glucuronic acid and sulfate. Based on these data and a comparison with synthesized reference standards for potential metabolites, specific and abundant 25C-NBOMe urine targets are 5'-desmethyl 25C-NBOMe, 25C-NBOMe and 5-hydroxy 25C-NBOMe, and for 25I-NBOMe 2' and 5'-desmethyl 25I-NBOMe and hydroxy 25I-NBOMe. These data will help clinical and forensic laboratories to develop analytical methods and to interpret results. Copyright © 2016 John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy