SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dias José M.) srt2:(2010-2014)"

Sökning: WFRF:(Dias José M.) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diogenes, Maria Jose, et al. (författare)
  • Extracellular Alpha-Synuclein Oligomers Modulate Synaptic Transmission and Impair LTP Via NMDA-Receptor Activation
  • 2012
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 32:34, s. 11750-11762
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of alpha-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.
  •  
2.
  • Goncalves, Isabel, et al. (författare)
  • Activator protein-1 in carotid plaques is related to cerebrovascular symptoms and cholesteryl ester content
  • 2011
  • Ingår i: Cardiovascular pathology. - : Elsevier. - 1054-8807 .- 1879-1336. ; 20:1, s. 36-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription factor activator protein-1 regulates genes involved in inflammation and repair. The aim of this study was to determine whether transcription factor activator protein-1 activity in carotid plaques is related to symptoms, lipid accumulation, or extracellular matrix composition. Methods: Twenty-eight atherosclerotic carotid plaques were removed by endarterectomy and divided into two groups based on the presence or absence of ipsilateral symptoms (b1 month ago). Activator protein-1 DNA binding activity was assessed, and subunit (c-Jun, JunD, JunB, c-Fos, FosB, Fra-1, Fra-2) protein levels analyzed by immunoblotting. Distribution of c-Jun in plaques was analyzed by immunohistochemistry. Results: Plaques associated with symptoms had increased activator protein-1 activity and increased expression of c-Jun and JunD, as compared to asymptomatic plaques. Fra-1 and Fra-2 were present in equal amounts in both groups, whereas JunB, FosB, and c-Fos were undetectable. Activator protein-1 activity correlated with cholesteryl ester and elastin in plaques and decreased with age. Activator protein-1 activity did not correlate with collagen, calcified tissue, or proteoglycan content. Conclusions: Activator protein-1 is increased in plaques associated with symptoms. The correlation between activator protein-1 and cholesteryl esters suggests that high activator protein-1 is a marker of plaque vulnerability. Activator protein-1 expression can also reflect the activation of repair processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy