SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Didriksen M) srt2:(2015-2019)"

Sökning: WFRF:(Didriksen M) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Nilsson, Simon R O, et al. (författare)
  • A mouse model of the 15q13.3 microdeletion syndrome shows prefrontal neurophysiological dysfunctions and attentional impairment
  • 2016
  • Ingår i: Psychopharmacologia. - : Springer Science and Business Media LLC. - 0033-3158. ; 233:11, s. 2151-2163
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: A microdeletion at locus 15q13.3 is associated with high incidence rates of psychopathology, including schizophrenia. A mouse model of the 15q13.3 microdeletion syndrome has been generated (Df[h15q13]/+) with translational utility for modelling schizophrenia-like pathology. Among other deficits, schizophrenia is characterised by dysfunctions in prefrontal cortical (PFC) inhibitory circuitry and attention. Objectives: The objective of this study is to assess PFC-dependent functioning in the Df(h15q13)/+ mouse using electrophysiological, pharmacological, and behavioural assays. Method: Experiments 1–2 investigated baseline firing and auditory-evoked responses of PFC interneurons and pyramidal neurons. Experiment 3 measured pyramidal firing in response to intra-PFC GABAAreceptor antagonism. Experiments 4–6 assessed PFC-dependent attentional functioning through the touchscreen 5-choice serial reaction time task (5-CSRTT). Experiments 7–12 assessed reversal learning, paired-associate learning, extinction learning, progressive ratio, trial-unique non-match to sample, and object recognition. Results: In experiments 1–3, the Df(h15q13)/+ mouse showed reduced baseline firing rate of fast-spiking interneurons and in the ability of the GABAAreceptor antagonist gabazine to increase the firing rate of pyramidal neurons. In assays of auditory-evoked responses, PFC interneurons in the Df(h15q13)/+ mouse had reduced detection amplitudes and increased detection latencies, while pyramidal neurons showed increased detection latencies. In experiments 4–6, the Df(h15q13)/+ mouse showed a stimulus duration-dependent decrease in percent accuracy in the 5-CSRTT. The impairment was insensitive to treatment with the partial α7nAChR agonist EVP-6124. The Df(h15q13)/+ mouse showed no cognitive impairments in experiments 7–12. Conclusion: The Df(h15q13)/+ mouse has multiple dysfunctions converging on disrupted PFC processing as measured by several independent assays of inhibitory transmission and attentional function.
  •  
5.
  • Thelin, J, et al. (författare)
  • The translationally relevant mouse model of the 15q13.3 microdeletion syndrome reveals deficits in neuronal spike firing matching clinical neurophysiological biomarkers seen in schizophrenia
  • 2017
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1716 .- 1748-1708. ; 220:1, s. 124-136
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: To date, the understanding and development of novel treatments for mental illness is hampered by inadequate animal models. For instance, it is unclear to what extent commonly used behavioural tests in animals can inform us on the mental and affective aspects of schizophrenia.METHODS: To link pathophysiological processes in an animal model to clinical findings, we have here utilized the recently developed Df(h15q13)/+ mouse model for detailed investigations of cortical neuronal engagement during pre-attentive processing of auditory information from two back-translational auditory paradigms. We also investigate if compromised putative fast-spiking interneurone (FSI) function can be restored through pharmacological intervention using the Kv3.1 channel opener RE1. Chronic multi-array electrodes in primary auditory cortex were used to record single cell firing from putative pyramidal and FSI in awake animals during processing of auditory sensory information.RESULTS: We find a decreased amplitude in the response to auditory stimuli and reduced recruitment of neurones to fast steady-state gamma oscillatory activity. These results resemble encephalography recordings in patients with schizophrenia. Furthermore, the probability of interneurones to fire with low interspike intervals during 80 Hz auditory stimulation was reduced in Df(h15q13)/+ mice, an effect that was partially reversed by the Kv3.1 channel modulator, RE1.CONCLUSIONS: This study offers insight into the consequences on a neuronal level of carrying the 15q13.3 microdeletion. Furthermore, it points to deficient functioning of interneurones as a potential pathophysiological mechanism in schizophrenia and suggests a therapeutic potential of Kv3.1 channel openers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy