SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dmitriev E.) srt2:(2015-2019)"

Sökning: WFRF:(Dmitriev E.) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Damgaard, P. D., et al. (författare)
  • 137 ancient human genomes from across the Eurasian steppes
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 557:7705, s. 369-374
  • Tidskriftsartikel (refereegranskat)abstract
    • For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1x average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century bc, forming the Hun traditions in the fourthfifth century ad, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.
  •  
3.
  • Grigorenko, L, et al. (författare)
  • Scientific program of DERICA-prospective accelerator and storage ring facility for radioactive ion beam research
  • 2019
  • Ingår i: Physics-Uspekhi. - 1468-4780 .- 1063-7869. ; 62:7, s. 675-690
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of radioactive ions (RIs) are the most thriving field of low-energy nuclear physics. In this paper, the concept and the scientific agenda of the prospective accelerator and storage ring facility for RI beam (RIB) research are proposed for a large-scale international project based at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research. The motivation for the new facility is discussed and its characteristics are briefly presented and shown to be comparable to those of advanced world centers, the so-called "RIB factories". In the project, the emphasis is made on studies with short-lived RIBs in storage rings. A unique feature of the project is the possibility of studying electron-RI interactions in a collider experiment to determine the fundamental properties of nuclear matter, in particular, electromagnetic form factors of exotic nuclei.
  •  
4.
  • Trompoukis, C., et al. (författare)
  • Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells
  • 2015
  • Ingår i: Physica Status Solidi (A) Applications and Materials Science. - : Wiley. - 1862-6319 .- 1862-6300. ; 212:1, s. 140-155
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern.
  •  
5.
  • Chen, W. H., et al. (författare)
  • Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells
  • 2016
  • Ingår i: Journal of Physics D: Applied Physics. - : IOP Publishing. - 1361-6463 .- 0022-3727. ; 49:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhancement of light absorption via nanopatterning in crystalline silicon solar cells is becoming extremely important with the decrease of wafer thickness for the further reduction of solar cell fabrication cost. In order to study the influence of nanopatterning on crystalline silicon thin-film solar cells, we applied two lithography techniques (laser interference lithography and nanoimprint lithography) combined with two etching techniques (dry and wet) to epitaxial crystalline silicon thin films deposited via plasma-enhanced chemical vapor deposition at 175 degrees C. The influence of nanopatterning with different etching profiles on solar cell performance is studied. We found that the etching profiles (pitch, depth and diameter) have a stronger impact on the passivation quality (open circuit voltage and fill factor) than on the optical performance (short circuit current density) of the solar cells. We also show that nanopatterns obtained via wet-etching can improve solar cell performance; and in contrast, dry-etching leads to poor passivation related to the etching profile, surface damage, and/ or contamination introduced during the etching process.
  •  
6.
  •  
7.
  •  
8.
  • Litnovsky, A., et al. (författare)
  • Diagnostic mirrors for ITER : research in the frame of International Tokamak Physics Activity
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 59:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirrors will be used as first plasma-viewing elements in optical and laser-based diagnostics in ITER. Deterioration of the mirror performance due to e.g. sputtering of the mirror surface by plasma particles or deposition of impurities will hamper the entire performance of the affected diagnostic and thus affect ITER operation. The Specialists Working Group on First Mirrors (FM SWG) in the Topical Group on Diagnostics of the International Tokamak Physics Activity (ITPA) plays an important role in finding solutions for diagnostic first mirrors. Sound progress in research and development of diagnostic mirrors in ITER was achieved since the last overview in 2009. Single crystal (SC) rhodium (Rh) mirrors became available. SC rhodium and molybdenum (Mo) mirrors survived in conditions corresponding to similar to 200 cleaning cycles with a negligible degradation of reflectivity. These results are important for a mirror cleaning system which is presently under development. The cleaning system is based on sputtering of contaminants by plasma. Repetitive cleaning was tested on several mirror materials. Experiments comprised contamination/cleaning cycles. The reflectivity SC Mo and Rh mirrors has changed insignificantly after 80 cycles. First in situ cleaning using radiofrequency (RF) plasma was conducted in EAST tokamak with a mock-up plate of ITER edge Thomson Scattering (ETS) with five inserted mirrors. Contaminants from the mirrors were removed. Physics of cleaning discharge was studied both experimentally and by modeling. Mirror contamination can also be mitigated by protecting diagnostic ducts. A deposition mitigation (DeMi) duct system was exposed in KSTAR. The real-time measurement of deposition in the diagnostic duct was pioneered during this experiment. Results evidenced the dominating effect of the wall conditioning and baking on contamination inside the duct. A baffled cassette with mirrors was exposed at the main wall of JET for 23,6 plasma hours. No significant degradation of reflectivity was measured on mirrors located in the ducts. Predictive modeling was further advanced. A model for the particle transport, deposition and erosion at the port-plug was used in selecting an optical layout of several ITER diagnostics. These achievements contributed to the focusing of the first mirror research thus accelerating the diagnostic development. Modeling requires more efforts. Remaining crucial issues will be in a focus of the future work of the FM SWG.
  •  
9.
  • Maccaferri, Nicolò, et al. (författare)
  • Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single-molecule sensing, arising from intrinsically nanoscopic sensing volume and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared with recently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (that is, without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of similar to 0.8 ag per nanoantenna of polyamide-6.6 (n = 1.51), which is representative for a large variety of polymers, peptides and proteins.
  •  
10.
  • Zuev, D. A., et al. (författare)
  • Multifunctional Sensing with Hybrid Nanophotonic Structures
  • 2017
  • Ingår i: Progress in Electromagnetics Research Symposium. - 1559-9450 .- 1931-7360. ; , s. 1491-1493
  • Konferensbidrag (refereegranskat)abstract
    • The development of multifunctional systems for investigation of different parameters involved in chemical reactions is a vital problem in case of low concentrations of tested matter. Here, we investigate hybrid plasmonic-dielectric system and demonstrate possibility of such application for multifunctional sensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy