SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dobbs S.) srt2:(2020-2024)"

Sökning: WFRF:(Dobbs S.) > (2020-2024)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Barucca, G., et al. (författare)
  • The potential of Λ and Ξ- studies with PANDA at FAIR
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: p¯ p→ Λ¯ Λ and p¯ p→ Ξ¯ +Ξ-. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA.
  •  
3.
  • Barucca, G., et al. (författare)
  • Study of excited Ξ baryons with the P¯ ANDA detector
  • 2021
  • Ingår i: European Physical Journal A. - : Springer Nature. - 1434-6001 .- 1434-601X. ; 57:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of baryon excitation spectra provides insight into the inner structure of baryons. So far, most of the world-wide efforts have been directed towards N∗ and Δ spectroscopy. Nevertheless, the study of the double and triple strange baryon spectrum provides independent information to the N∗ and Δ spectra. The future antiproton experiment P¯ANDA will provide direct access to final states containing a Ξ¯ Ξ pair, for which production cross sections up to μb are expected in p¯p reactions. With a luminosity of L= 10 31 cm- 2 s- 1 in the first phase of the experiment, the expected cross sections correspond to a production rate of ∼106events/day. With a nearly 4 π detector acceptance, P¯ANDA will thus be a hyperon factory. In this study, reactions of the type p¯p → Ξ¯ +Ξ∗ - as well as p¯p → Ξ¯ ∗ +Ξ- with various decay modes are investigated. For the exclusive reconstruction of the signal events a full decay tree fit is used, resulting in reconstruction efficiencies between 3 and 5%. This allows high statistics data to be collected within a few weeks of data taking.
  •  
4.
  • Sugai, H., et al. (författare)
  • Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
  • 2020
  • Ingår i: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 199:3-4, s. 1107-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
  •  
5.
  • Schuller, F., et al. (författare)
  • The SEDIGISM survey: First Data Release and overview of the Galactic structure
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3064-3082
  • Tidskriftsartikel (refereegranskat)abstract
    • The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic InterstellarMedium) survey used the APEX telescope to map 84 deg(2) of the Galactic plane between l = -60 degrees and +31 degrees in several molecular transitions, including (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1), thus probing the moderately dense (similar to 10(3) cm(-3)) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1 sigma sensitivity of 0.8-1.0K at 0.25 km s(-1) velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
  •  
6.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
7.
  • Amiri, M., et al. (författare)
  • Periodic activity from a fast radio burst source
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582:7812, s. 351-355
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.
  •  
8.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
9.
  • Marcote, B., et al. (författare)
  • A repeating fast radio burst source localized to a nearby spiral galaxy
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 577:7789, s. 190-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
  •  
10.
  • Jung, Dooseok Escher, et al. (författare)
  • Universal Upper End of the Stellar Initial Mass Function in the Young and Compact LEGUS Clusters
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 954:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the variation in the upper end of the stellar initial mass function (uIMF) in 375 young and compact star clusters in five nearby galaxies within ∼5 Mpc. All the young stellar clusters (YSCs) in the sample have ages ≲ 4 Myr and masses above 500 M⊙, according to standard stellar models. The YSC catalogs were produced from Hubble Space Telescope images obtained as part of the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. They are used here to test whether the uIMF is universal or changes as a function of the cluster's stellar mass. We perform this test by measuring the Hα luminosity of the star clusters as a proxy for their ionizing photon rate, and charting its trend as a function of cluster mass. Large cluster numbers allow us to mitigate the stochastic sampling of the uIMF. The advantage of our approach relative to previous similar attempts is the use of cluster catalogs that have been selected independently of the presence of Hα emission, thus removing a potential sample bias. We find that the uIMF, as traced by the Hα emission, shows no dependence on cluster mass, suggesting that the maximum stellar mass that can be produced in star clusters is universal, in agreement with previous findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy