SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dobson A) srt2:(2000-2004)"

Sökning: WFRF:(Dobson A) > (2000-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dubrovinsky, L., et al. (författare)
  • Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle
  • 2003
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 422:6927, s. 58-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The boundary between the Earth's metallic core and its silicate mantle is characterized by strong lateral heterogeneity and sharp changes in density, seismic wave velocities, electrical conductivity and chemical composition(1-7). To investigate the composition and properties of the lowermost mantle, an understanding of the chemical reactions that take place between liquid iron and the complex Mg-Fe-Si-Al-oxides of the Earth's lower mantle is first required(8-15). Here we present a study of the interaction between iron and silica (SiO2) in electrically and laser-heated diamond anvil cells. In a multianvil apparatus at pressures up to 140 GPa and temperatures over 3,800 K we simulate conditions down to the core-mantle boundary. At high temperature and pressures below 40 GPa, iron and silica react to form iron oxide and an iron-silicon alloy, with up to 5 wt% silicon. At pressures of 85-140 GPa, however, iron and SiO2 do not react and iron-silicon alloys dissociate into almost pure iron and a CsCl-structured (B2) FeSi compound. Our experiments suggest that a metallic silicon-rich B2 phase, produced at the core-mantle boundary (owing to reactions between iron and silicate(2,9,10,13)), could accumulate at the boundary between the mantle and core and explain the anomalously high electrical conductivity of this region(6).
  •  
2.
  •  
3.
  • Chamberlain, Aaron K, et al. (författare)
  • Ultrastructural organization of amyloid fibrils by atomic force microscopy
  • 2000
  • Ingår i: Biophysical Journal. - : Cell Press. - 0006-3495 .- 1542-0086. ; 79:6, s. 3282-3293
  • Tidskriftsartikel (refereegranskat)abstract
    • Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.
  •  
4.
  •  
5.
  • Morozova-Roche, Ludmilla A, et al. (författare)
  • Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants
  • 2000
  • Ingår i: Journal of Structural Biology. - : Elsevier BV. - 1047-8477 .- 1095-8657. ; 130:2-3, s. 339-351
  • Tidskriftsartikel (refereegranskat)abstract
    • Wild-type human lysozyme and its two stable amyloidogenic variants have been found to form partially folded states at low pH. These states are characterized by extensive disruption of tertiary interactions and partial loss of secondary structure. Incubation of the proteins at pH 2.0 and 37 degrees C (Ile56Thr and Asp67His variants) or 57 degrees C (wild-type) results in the formation of large numbers of fibrils over several days of incubation. Smaller numbers of fibrils could be observed under other conditions, including neutral pH. These fibrils were analyzed by electron microscopy, Congo red birefringence, thioflavine-T binding, and X-ray fiber diffraction, which unequivocally show their amyloid character. These data demonstrate that amyloidogenicity is an intrinsic property of human lysozyme and does not require the presence of specific mutations in its primary structure. The amyloid fibril formation is greatly facilitated, however, by the introduction of "seeds" of preformed fibrils to the solutions of the variant proteins, suggesting that seeding effects could be important in the development of systemic amyloidosis. Fibril formation by wild-type human lysozyme is greatly accelerated by fibrils of the variant proteins and vice versa, showing that seeding is not specific to a given protein. The fact that wild-type lysozyme has not been found in ex vivo deposits from patients suffering from this disease is likely to be related to the much lower population of incompletely folded states for the wild-type protein compared to its amyloidogenic variants under physiological conditions. These results support the concept that the ability to form amyloid is a generic property of proteins, but one that is mitigated against in a normally functioning organism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy