SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dolga A.) "

Sökning: WFRF:(Dolga A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Han, W., et al. (författare)
  • Dying transplanted neural stem cells mediate survival bystander effects in the injured brain
  • 2023
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural stem and progenitor cell (NSPC) transplants provide neuroprotection in models of acute brain injury, but the underlying mechanisms are not fully understood. Here, we provide evidence that caspase-dependent apoptotic cell death of NSPCs is required for sending survival signals to the injured brain. The secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo. Our findings support a new concept suggesting a bystander effect of apoptotic NSPCs, which actively promote neuronal survival through the release of a protective "farewell" secretome. Similar protective effects by the secretome of apoptotic NSPC were also confirmed in human neural progenitor cells and neural stem cells but not in mouse embryonic fibroblasts (MEF) or human dopaminergic neurons, suggesting that the observed effects are cell type specific and exist for neural progenitor/stem cells across species.
  •  
3.
  • Wegrzyn, Agnieszka B., et al. (författare)
  • Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease
  • 2020
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 287:23, s. 5096-5113
  • Tidskriftsartikel (refereegranskat)abstract
    • Refsum disease (RD) is an inborn error of metabolism that is characterised by a defect in peroxisomal α-oxidation of the branched-chain fatty acid phytanic acid. The disorder presents with late-onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanate in plasma and tissues of patients. To date, no cure exists for RD, but phytanate levels in patients can be reduced by plasmapheresis and a strict diet. In this study, we reconstructed a fibroblast-specific genome-scale model based on the recently published, FAD-curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier GSE138379), metabolomics and proteomics (available via ProteomeXchange with identifier PXD015518) data, which we obtained from healthy controls and RD patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our model correctly represents the metabolism of phytanate and displays fibroblast-specific metabolic functions. Using this model, we investigated the metabolic phenotype of RD at the genome scale, and we studied the effect of phytanate on cell metabolism. We identified 53 metabolites that were predicted to discriminate between healthy and RD patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy. Databases: Transcriptomics data are available via GEO database with identifier GSE138379, and proteomics data are available via ProteomeXchange with identifier PXD015518.
  •  
4.
  • Zhou, Kai, et al. (författare)
  • Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:21, s. 34111-34127
  • Tidskriftsartikel (refereegranskat)abstract
    • Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy