SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dore Sabina) srt2:(2010-2014)"

Sökning: WFRF:(Dore Sabina) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Migliavacca, Mirco, et al. (författare)
  • Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites
  • 2011
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 17:1, s. 390-409
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we examined ecosystem respiration (R-ECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of R-ECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of R-ECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of R-ECO. The maximum seasonal leaf area index (LAI(MAX)) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature T-ref=15 degrees C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P < 0.001, n=104) even within each PFT. Besides LAI(MAX), we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (N-depo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAI(MAX)) which performed well in predicting the spatio-temporal variability of R-ECO, explaining > 70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.
  •  
2.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy