SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorlo Thomas P. C. PhD 1983 ) srt2:(2021)"

Sökning: WFRF:(Dorlo Thomas P. C. PhD 1983 ) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boosman, René J, et al. (författare)
  • Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment
  • 2021
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 149:8, s. 1576-1584
  • Tidskriftsartikel (refereegranskat)abstract
    • Pemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m2 would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment.
  •  
2.
  •  
3.
  • Siebinga, H, et al. (författare)
  • A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors
  • 2021
  • Ingår i: EJNMMI Research. - : Springer Nature. - 2191-219X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs. The aim of this study was to develop a PBPK model to describe organ distribution of 68Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).METHODS: Clinical 68Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30-60 min) after intravenous bolus injection of 68Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.RESULTS: 68Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05-16.9 µg) labeled with 92.7 MBq (range 43.4-129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.CONCLUSIONS: To conclude, biodistribution of 68Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.
  •  
4.
  • Janssen, Julie M, et al. (författare)
  • Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine.
  • 2021
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 23:1, s. 23-
  • Tidskriftsartikel (refereegranskat)abstract
    • Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy