SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dotti A.) srt2:(2020-2022)"

Sökning: WFRF:(Dotti A.) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arce, P., et al. (författare)
  • Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group
  • 2021
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 48:1, s. 19-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Geant4 is a Monte Carlo code extensively used in medical physics for a wide range of applications, such as dosimetry, micro- and nanodosimetry, imaging, radiation protection, and nuclear medicine. Geant4 is continuously evolving, so it is crucial to have a system that benchmarks this Monte Carlo code for medical physics against reference data and to perform regression testing. Aims: To respond to these needs, we developed G4-Med, a benchmarking and regression testing system of Geant4 for medical physics. Materials and Methods: G4-Med currently includes 18 tests. They range from the benchmarking of fundamental physics quantities to the testing of Monte Carlo simulation setups typical of medical physics applications. Both electromagnetic and hadronic physics processes and models within the prebuilt Geant4 physics lists are tested. The tests included in G4-Med are executed on the CERN computing infrastructure via the use of the geant-val web application, developed at CERN for Geant4 testing. The physical observables can be compared to reference data for benchmarking and to results of previous Geant4 versions for regression testing purposes. Results: This paper describes the tests included in G4-Med and shows the results derived from the benchmarking of Geant4 10.5 against reference data. Discussion: Our results indicate that the Geant4 electromagnetic physics constructor G4EmStandardPhysics_option4 gives a good agreement with the reference data for all the tests. The QGSP_BIC_HP physics list provided an overall adequate description of the physics involved in hadron therapy, including proton and carbon ion therapy. New tests should be included in the next stage of the project to extend the benchmarking to other physical quantities and application scenarios of interest for medical physics. Conclusion: The results presented and discussed in this paper will aid users in tailoring physics lists to their particular application.
  •  
2.
  • Agarwalla, Pritha, et al. (författare)
  • Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells
  • 2022
  • Ingår i: Nature Biotechnology. - : Nature Publishing Group. - 1087-0156 .- 1546-1696. ; 40:8, s. 1250-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite their clinical success, chimeric antigen receptor (CAR)-T cell therapies for B cell malignancies are limited by lengthy, costly and labor-intensive ex vivo manufacturing procedures that might lead to cell products with heterogeneous composition. Here we describe an implantable Multifunctional Alginate Scaffold for T Cell Engineering and Release (MASTER) that streamlines in vivo CAR-T cell manufacturing and reduces processing time to a single day. When seeded with human peripheral blood mononuclear cells and CD19-encoding retroviral particles, MASTER provides the appropriate interface for viral vector-mediated gene transfer and, after subcutaneous implantation, mediates the release of functional CAR-T cells in mice. We further demonstrate that in vivo-generated CAR-T cells enter the bloodstream and control distal tumor growth in a mouse xenograft model of lymphoma, showing greater persistence than conventional CAR-T cells. MASTER promises to transform CAR-T cell therapy by fast-tracking manufacture and potentially reducing the complexity and resources needed for provision of this type of therapy.
  •  
3.
  • Dorschel, Boris, et al. (författare)
  • The International Bathymetric Chart of the Southern Ocean Version 2
  • 2022
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern Ocean surrounding Antarctica is a region that is key to a range of climatic and oceanographic processes with worldwide effects, and is characterised by high biological productivity and biodiversity. Since 2013, the International Bathymetric Chart of the Southern Ocean (IBCSO) has represented the most comprehensive compilation of bathymetry for the Southern Ocean south of 60 degrees S. Recently, the IBCSO Project has combined its efforts with the Nippon Foundation - GEBCO Seabed 2030 Project supporting the goal of mapping the world's oceans by 2030. New datasets initiated a second version of IBCSO (IBCSO v2). This version extends to 50 degrees S (covering approximately 2.4 times the area of seafloor of the previous version) including the gateways of the Antarctic Circumpolar Current and the Antarctic circumpolar frontal systems. Due to increased (multibeam) data coverage, IBCSO v2 significantly improves the overall representation of the Southern Ocean seafloor and resolves many submarine landforms in more detail. This makes IBCSO v2 the most authoritative seafloor map of the area south of 50 degrees S.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy