SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dougherty M. K.) srt2:(2010-2014)"

Sökning: WFRF:(Dougherty M. K.) > (2010-2014)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gurnett, D. A., et al. (författare)
  • A plasmapause-like density boundary at high latitudes in Saturn's magnetosphere
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37, s. L16806-
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the discovery of a well-defined plasma density boundary at high latitudes in Saturn's magnetosphere. The boundary separates a region of relatively high density at L less than about 8 to 15 from a region with densities nearly three orders of magnitude lower at higher L values. Magnetic field measurements show that strong field-aligned currents, probably associated with the aurora, are located just inside the boundary. Analyses of the anisotropy of energetic electrons show that the magnetic field lines are usually closed inside the boundary and open outside the boundary, although exceptions sometimes occur. The location of the boundary is also modulated at the similar to 10.6 to 10.8 hr rotational period of the planet. Many of these characteristics are similar to those predicted by Brice and Ioannidis for the plasmapause at a strongly magnetized, rapidly rotating planet such as Saturn.
  •  
4.
  • Cui, J., et al. (författare)
  • Ion transport in Titan's upper atmosphere
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A06314-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
  •  
5.
  • Jinks, S. L., et al. (författare)
  • Cassini multi-instrument assessment of Saturn's polar cap boundary
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:10, s. 8161-8177
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first systematic investigation of the polar cap boundary in Saturn's high-latitude magnetosphere through a multi-instrument assessment of various Cassini in situ data sets gathered between 2006 and 2009. We identify 48 polar cap crossings where the polar cap boundary can be clearly observed in the step in upper cutoff of auroral hiss emissions from the plasma wave data, a sudden increase in electron density, an anisotropy of energetic electrons along the magnetic field, and an increase in incidence of higher-energy electrons from the low-energy electron spectrometer measurements as we move equatorward from the pole. We determine the average level of coincidence of the polar cap boundary identified in the various in situ data sets to be 0.34 degrees 0.05 degrees colatitude. The average location of the boundary in the southern (northern) hemisphere is found to be at 15.6 degrees (13.3 degrees) colatitude. In both hemispheres we identify a consistent equatorward offset between the poleward edge of the auroral upward directed field-aligned current region of similar to 1.5-1.8 degrees colatitude to the corresponding polar cap boundary. We identify atypical observations in the boundary region, including observations of approximately hourly periodicities in the auroral hiss emissions close to the pole. We suggest that the position of the southern polar cap boundary is somewhat ordered by the southern planetary period oscillation phase but that it cannot account for the boundary's full latitudinal variability. We find no clear evidence of any ordering of the northern polar cap boundary location with the northern planetary period magnetic field oscillation phase.
  •  
6.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
7.
  • Edberg, Niklas, et al. (författare)
  • Electron density and temperature measurements in the cold plasma environment of Titan : Implications for atmospheric escape
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37:20, s. L20105-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present electron temperature and density measurements of Titan's cold ionospheric plasma from the Langmuir probe instrument on Cassini from 52 flybys. An expression of the density as a function of temperature is presented for altitudes below two Titan radii. The density falls off exponentially with increased temperature as log(n(e)) = -2.0log(T-e) + 0.6 on average around Titan. We show that this relation varies with location around Titan as well as with the solar illumination direction. Significant heating of the electrons appears to take place on the night/wake side of Titan as the density-temperature relation is less steep there. Furthermore, we show that the magnetospheric ram pressure is not balanced by the thermal and magnetic pressure in the topside ionosphere and discuss its implications for plasma escape. The cold ionospheric plasma of Titan extends to higher altitudes in the wake region, indicating the loss of atmosphere down the induced magnetospheric tail.
  •  
8.
  • Edberg, Niklas J. T., et al. (författare)
  • Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:12, s. 2879-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Cassini Langmuir probe measurements of the highest electron number densities ever reported from the ionosphere of Titan. The measured density reached 4310cm(-3) during the T85 Titan flyby. This is at least 500cm(-3) higher than ever observed before and at least 50% above the average density for similar solar zenith angles. The peak of the ionospheric density is not reached on this flyby, making the maximum measured density a lower limit. During this flyby, we also report that an impacting coronal mass ejection (CME) leaves Titan in the magnetosheath of Saturn, where it is exposed to shocked solar wind plasma for at least 2 h 45 min. We suggest that the solar wind plasma in the magnetosheath during the CME conditions significantly modifies Titan's ionosphere by an addition of particle impact ionization by precipitating protons.
  •  
9.
  • Luhmann, J. G., et al. (författare)
  • Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys
  • 2012
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 219:2, s. 534-555
  • Tidskriftsartikel (refereegranskat)abstract
    • In the similar to 6 years since the Cassini spacecraft went into orbit around Saturn in 2004, roughly a dozen Titan flybys have occurred for which the Ion Neutral Mass Spectrometer (INMS) measured that moon's ionospheric density and composition. For these, and for the majority of the similar to 60 close flybys probing to altitudes down to similar to 950 km, Langmuir Probe electron densities were also obtained. These were all complemented by Cassini magnetometer observations of the magnetic fields affected by the Titan plasma interaction. Titan's ionosphere was expected to differ from those of other unmagnetized planetary bodies because of significant contributions from particle impact due to its magnetospheric environment. However, previous analyses of these data clearly showed the dominance of the solar photon source, with the possible exception of the nightside. This paper describes the collected ionospheric data obtained in the period between Cassini's Saturn Orbit Insertion in 2004 and 2009, and examines some of their basic characteristics with the goal of searching for magnetospheric influences. These influences might include effects on the altitude profiles of impact ionization by magnetospheric particles at the Titan orbit location, or by locally produced pickup ions freshly created in Titan's upper atmosphere. The effects of forces on the ionosphere associated with both the draped and penetrating external magnetic fields might also be discernable. A number of challenges arise in such investigations given both the observed order of magnitude variations in the magnetospheric particle sources and the unsteadiness of the magnetospheric magnetic field and plasma flows at Titan's (similar to 20Rs (Saturn Radius)) orbit. Transterminator flow of ionospheric plasma from the dayside may also supply some of the nightside ionosphere, complicating determination of the magnetospheric contribution. Moreover, we are limited by the sparse sampling of the ionosphere during the mission as the Titan interaction also depends on Saturn Local Time as well as possible intrinsic asymmetries and variations of Titan's neutral atmosphere. We use organizations of the data by key coordinate systems of the plasma interaction with Titan's ionosphere to help interpret the observations. The present analysis does not find clear characteristics of the magnetosphere's role in defining Titan's ionosphere. The observations confirm the presence of an ionosphere produced mainly by sunlight, and an absence of expected ionospheric field signatures in the data. Further investigation of the latter, in particular, may benefit from numerical experiments on the inner boundary conditions of 3D models including the plasma interaction and features such as neutral winds.
  •  
10.
  • Ma, Y. J., et al. (författare)
  • The importance of thermal electron heating in Titan's ionosphere : Comparison with Cassini T34 flyby
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A10213-
  • Tidskriftsartikel (refereegranskat)abstract
    • We use a new magnetohydrodynamic (MHD) model to study the effects of thermal-electron heating in Titan's ionosphere. This model improves the previously used multispecies MHD model by solving both the electron and ion pressure equations instead of a single plasma pressure equation. This improvement enables a more accurate evaluation of ion and electron temperatures inside Titan's ionosphere. The model is first applied to an idealized case, and the results are compared in detail with those of the single-pressure MHD model to illustrate the effects of the improvement. Simulation results show that the dayside ionosphere thermal pressure is larger than the upstream pressure during normal conditions, when Titan is located in the dusk region; thus Saturn's magnetic field is shielded by the highly conducting ionosphere, similar to the interaction of Venus during solar maximum conditions. This model is also applied to a special flyby of Titan, the T34 flyby, which occurred near the dusk region. It is shown that better agreement with the magnetometer data can be achieved using the two-fluid MHD model with the inclusion of the effects of thermal electron heating. The model results clearly demonstrate the importance of thermal-electron heating in Titan's ionosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy