SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dreuw Andreas) srt2:(2020)"

Sökning: WFRF:(Dreuw Andreas) > (2020)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herbst, Michael F., et al. (författare)
  • adcc : A versatile toolkit for rapid development of algebraic-diagrammatic construction methods
  • 2020
  • Ingår i: Wiley Interdisciplinary Reviews. Computational Molecular Science. - : Wiley. - 1759-0876 .- 1759-0884. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • ADC-connect (adcc) is a hybrid python/C++ module for performing excited state calculations based on the algebraic-diagrammatic construction scheme for the polarization propagator (ADC). Key design goal is to restrict adcc to this single purpose and facilitate connection to external packages, for example, for obtaining the Hartree-Fock references, plotting spectra, or modeling solvents. Interfaces to four self-consistent field codes have already been implemented, namely pyscf, psi4, molsturm, and veloxchem. The computational workflow, including the numerical solvers, is implemented in python, whereas the working equations and other expensive expressions are done in C++. This equips adcc with adequate speed, making it a flexible toolkit for both rapid development of ADC-based computational spectroscopy methods as well as unusual computational workflows. This is demonstrated by three examples. Presently, ADC methods up to third order in perturbation theory are available in adcc, including the respective core-valence separation and spin-flip variants. Both restricted or unrestricted Hartree-Fock references can be employed.This article is categorized under: Software > Simulation Methods Electronic Structure Theory > Ab Initio Electronic Structure Methods Theoretical and Physical Chemistry > Spectroscopy Software > Quantum Chemistry
  •  
2.
  • Hodecker, Manuel, et al. (författare)
  • Unitary coupled cluster ground- and excited-state molecular properties
  • 2020
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 153:8
  • Tidskriftsartikel (refereegranskat)abstract
    • A scheme for the calculation of molecular properties within the framework of unitary coupled-cluster (UCC) theory in both the electronic ground and excited states is presented. The scheme is based on an expectation-value ansatz, similar to the equation-of-motion coupled-cluster method or the intermediate state representation (ISR) approach of the algebraic-diagrammatic construction (ADC) scheme. Due to the UCC ansatz, the resulting equations cannot be given by closed-form expressions but need to be approximated. Explicit expressions for the expectation value of a general one-particle operator correct through second order in perturbation theory have been derived and coded for the electronic ground state as well as for excited states of predominant single-excitation character. The resulting equations are shown to be equivalent to those of the second-order ADC/ISR procedure. As first computational tests, the second-order UCC method (UCC2) and the one employing third-order amplitudes (also eigenvectors) together with the second-order density matrix, denoted as UCC3(2), are applied to the calculation of dipole moments for a series of small closed- and open-shell systems as well as 4-cyanoindole and 2,3-benzofuran and compared to full configuration interaction or experimental results. For the aromatic organic molecules, the UCC2 method is shown to be sufficient for the ground-state dipole moment, whereas the UCC3(2) scheme is superior for excited-state dipole moments.
  •  
3.
  • List, Nanna H., et al. (författare)
  • Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy
  • 2020
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 11:16, s. 4180-4193
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C & xe001;C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S-2(pi pi*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S-1(n pi*) state. Potential intersystem crossing to T-1(pi pi*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.
  •  
4.
  • Scheurer, Maximilian, et al. (författare)
  • Complex excited state polarizabilities in the ADC/ISR framework
  • 2020
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 153:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the derivation and implementation of complex, frequency-dependent polarizabilities for excited states using the algebraic-diagrammatic construction for the polarization propagator (ADC) and its intermediate state representation. Based on the complex polarizability, we evaluate C-6 dispersion coefficients for excited states. The methodology is implemented up to third order in perturbation theory in the Python-driven adcc toolkit for the development and application of ADC methods. We exemplify the approach using illustrative model systems and compare it to results from other ab initio methods and from experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy