SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dreval M. B.) srt2:(2020-2024)"

Sökning: WFRF:(Dreval M. B.) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Zohm, H., et al. (författare)
  • Overview of ASDEX upgrade results in view of ITER and DEMO
  • 2024
  • Ingår i: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 64:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance.
  •  
6.
  • Stroth, U., et al. (författare)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
7.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
8.
  • Chellaï, O., et al. (författare)
  • Millimeter-wave beam scattering and induced broadening by plasma turbulence in the TCV tokamak
  • 2021
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 61:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The scattering of millimeter-wave beams from electron density fluctuations and the associated beam broadening are experimentally demonstrated. Using a dedicated setup, instantaneous deflection and (de-)focusing of the beam due to density blobs on the beam path are shown to agree with full-wave simulations. The detected time-averaged wave power transmitted through the turbulent plasma is reproduced by the radiative-transfer model implemented in the WKBeam code, which predicts a ∼50% turbulence-induced broadening of the beam cross-section. The role of core turbulence for the considered geometry is highlighted.
  •  
9.
  • van Laarhoven, Cjhcm, et al. (författare)
  • Delayed Development of Aneurysmal Dilatations in Patients with Extracranial Carotid Artery Dissections
  • 2022
  • Ingår i: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884. ; 64:6, s. 595-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Dissection of the carotid artery (CaAD) may result in aneurysm formation. The present study was undertaken to evaluate the time of onset of post-dissection extracranial carotid artery aneurysms (ECAA) following CaAD, and to analyse independent risk factors for the development of these aneurysms. Methods: From four European stroke centres, 360 patients with extracranial CaAD were included. The time between the estimated dissection onset and aneurysm formation was analysed, and the clinical risk factors increasing the probability of aneurysm were assessed. Results: The median duration of follow up was 5.2 months (range 0 - 24 months). A total of 75 post-dissection ECAAs were identified in 70 patients (19.4%, 95% confidence interval [CI] 15.7 - 23.8). In 52 of 70 (74%) patients, the ECAA was diagnosed at the initial clinical work up of CaAD diagnosis, with the median estimated time of dissection onset to ECAA diagnosis being six days (interquartile range [IQR] 0 - 25). In the remaining 18 (26%) patients who had normal carotid arteries at the initial imaging, the aneurysm diagnosis was made a median of 6.2 months (189 days) from the original imaging (IQR 128 - 198). A Cox proportional hazards model showed that both multiple artery dissections (hazard ratio [HR] 2.58, 95% CI 1.54 - 4.33) and arterial tortuosity (HR 1.79, 95% CI 1.08 - 2.95) were associated with presence of ipsilateral ECAA. Conclusion: This post hoc cohort analysis showed substantially delayed development of ipsilateral ECAA in patients with CaAD, months after baseline. Multiple dissections and arterial tortuosity are associated with the presence of ECAA and can be used in future prediction models of ECAA development in patients with CaAD.
  •  
10.
  • Moiseyenko, Volodymyr, et al. (författare)
  • Developments for stellarator-mirror fusion-fission hybrid concept
  • 2021
  • Ingår i: Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion. - : NRC Kurchatov Institute. - 0202-3822. ; 44:2, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Conceptual development activities on a stellarator-mirror-based fission-fusion hybrid system (SM hybrid) are reviewed. Intended fortransmutation of spent nuclear fuel and safe fission energy production, SM hybrid consists of a fusion neutron source and a powerful subcritical fast fission reactor core. Its fusion component is a stellarator with an embedded magnetic mirror. The stellarator allows for theconfinement of a moderately hot (1—2 keV) deuterium plasma. In the magnetic mirror, the hot sloshing tritium ions are trapped andfusion neutrons are generated. The magnetic mirror is surrounded by a fission mantle, where transmutation of minor actinides and energygeneration take place. One candidate magnetic confinement device for the SM hybrid is the advanced DRACON magnetic trap system,which, unlike the «classical» DRACON version, has one short, rather than two longer mirrors with a relatively short size of 3—6 m. Acomparative numerical analysis of collisionless losses occurring in the magnetic trap part of the single-mirror DRACON leads to a conclusion about the possibility for high-energy tritium ions to be fairly well confined in the magnetic trap area. The Uragan-2M (U-2M)stellarator is used to test the SM hybrid concept with experiment. To fit a magnetic trap into U-2M system, one of the toroidal coils hadto be switched off. A radial escape of charged particles may spontaneously give rise to a weak radial electric field, which may result inclosing the particles’ drift trajectories and thereby substantially improve their confinement. Background plasma confinement withoutdestructive instabilities is demonstrated in the stellarator-mirror regime of U-2M) operation. The sloshing ions driven by radio-frequencyheating are detected in the mirror part of the device with NPA diagnostics. A novel fission mantle design for the SM hybrid is proposed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy