SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Driessen A. J. M.) srt2:(2015-2019)"

Sökning: WFRF:(Driessen A. J. M.) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Medema, M. H., et al. (författare)
  • Minimum Information about a Biosynthetic Gene cluster
  • 2015
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 11:9, s. 625-631
  • Forskningsöversikt (refereegranskat)abstract
    • A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.
  •  
2.
  •  
3.
  • Bracher, J. M., et al. (författare)
  • The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae
  • 2018
  • Ingår i: Biotechnology for Biofuels. - : BioMed Central. - 1754-6834 .- 1754-6834. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. Results: Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (K m = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. Conclusion: Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
  •  
4.
  • Verhoeven, Maarten D., et al. (författare)
  • Laboratory evolution of a glucose-phosphorylation-deficient, arabinose-fermenting S. cerevisiae strain reveals mutations in GAL2 that enable glucose-insensitive L-arabinose uptake
  • 2018
  • Ingår i: FEMS yeast research (Print). - : Oxford University Press. - 1567-1356 .- 1567-1364. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cas9-assisted genome editing was used to construct an engineered glucose-phosphorylation-negative S. cerevisiae strain, expressing the Lactobacillus plantarum L-arabinose pathway and the Penicillium chrysogenum transporter PcAraT. This strain, which showed a growth rate of 0.26 h(-1) on L-arabinose in aerobic batch cultures, was subsequently evolved for anaerobic growth on L-arabinose in the presence of D-glucose and D-xylose. In four strains isolated from two independent evolution experiments the galactose-transporter gene GAL2 had been duplicated, with all alleles encoding Gal2(N376T) or Gal(2N376I) substitutions. In one strain, a single GAL2 allele additionally encoded a Gal2(T89I) substitution, which was subsequently also detected in the independently evolved strain IMS0010. In C-14-sugar-transport assays, Gal2(N376S), Gal2(N376T) and Gal(2N376I) substitutions showed a much lower glucose sensitivity of L-arabinose transport and a much higher Km for D-glucose transport than wild-type Gal2. Introduction of the Gal2(N376I) substitution in a non-evolved strain enabled growth on L-arabinose in the presence of D-glucose. Gal2(N376T), T89I and Gal2(T89I) variants showed a lower K-m for L-arabinose and a higher K-m for D-glucose than wild-type Gal2, while reverting Gal2(N376T), T89I to Gal2(N376) in an evolved strain negatively affected anaerobic growth on L-arabinose. This study indicates that optimal conversion of mixed-sugar feedstocks may require complex 'transporter landscapes', consisting of sugar transporters with complementary kinetic and regulatory properties.
  •  
5.
  •  
6.
  • Guzman-Chavez, F., et al. (författare)
  • Mechanism and regulation of sorbicillin biosynthesis by Penicillium chrysogenum
  • 2017
  • Ingår i: Microbial Biotechnology. - : Wiley. - 1751-7907 .- 1751-7915. ; 10:4, s. 958-968
  • Tidskriftsartikel (refereegranskat)abstract
    • Penicillium chrysogenum is a filamentous fungus that is used to produce -lactams at an industrial scale. At an early stage of classical strain improvement, the ability to produce the yellow-coloured sorbicillinoids was lost through mutation. Sorbicillinoids are highly bioactive of great pharmaceutical interest. By repair of a critical mutation in one of the two polyketide synthases in an industrial P.chrysogenum strain, sorbicillinoid production was restored at high levels. Using this strain, the sorbicillin biosynthesis pathway was elucidated through gene deletion, overexpression and metabolite profiling. The polyketide synthase enzymes SorA and SorB are required to generate the key intermediates sorbicillin and dihydrosorbicillin, which are subsequently converted to (dihydro)sorbillinol by the FAD-dependent monooxygenase SorC and into the final product oxosorbicillinol by the oxidoreductase SorD. Deletion of either of the two pks genes not only impacted the overall production but also strongly reduce the expression of the pathway genes. Expression is regulated through the interplay of two transcriptional regulators: SorR1 and SorR2. SorR1 acts as a transcriptional activator, while SorR2 controls the expression of sorR1. Furthermore, the sorbicillinoid pathway is regulated through a novel autoinduction mechanism where sorbicillinoids activate transcription.
  •  
7.
  • Mózsik, László, et al. (författare)
  • Synthetic control devices for gene regulation in Penicillium chrysogenum
  • 2019
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 18:1, s. 203-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Orthogonal, synthetic control devices were developed for Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. In the synthetic transcription factor, the QF DNA-binding domain of the transcription factor of the quinic acid gene cluster of Neurospora crassa is fused to the VP16 activation domain. This synthetic transcription factor controls the expression of genes under a synthetic promoter containing quinic acid upstream activating sequence (QUAS) elements, where it binds. A gene cluster may demand an expression tuned individually for each gene, which is a great advantage provided by this system. RESULTS: The control devices were characterized with respect to three of their main components: expression of the synthetic transcription factors, upstream activating sequences, and the affinity of the DNA binding domain of the transcription factor to the upstream activating domain. This resulted in synthetic expression devices, with an expression ranging from hardly detectable to a level similar to that of highest expressed native genes. The versatility of the control device was demonstrated by fluorescent reporters and its application was confirmed by synthetically controlling the production of penicillin. CONCLUSIONS: The characterization of the control devices in microbioreactors, proved to give excellent indications for how the devices function in production strains and conditions. We anticipate that these well-characterized and robustly performing control devices can be widely applied for the production of secondary metabolites and other compounds in filamentous fungi.
  •  
8.
  • Pohl, Carsten, et al. (författare)
  • Genome editing in penicillium chrysogenum using cas9 ribonucleoprotein particles
  • 2018
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer New York. - 1940-6029 .- 1064-3745. ; , s. 213-232
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Several CRISPR/Cas9 tools have been recently established for precise genome editing in a wide range of filamentous fungi. This genome editing platform offers high flexibility in target selection and the possibility of introducing genetic deletions without the introduction of transgenic sequences. This chapter describes an approach for the transformation of Penicillium chrysogenum protoplasts with preassembled ribonucleoprotein particles (RNPs) consisting of purified Cas9 protein and in vitro transcribed single guide RNA (sgRNA) for the deletion of genome sequences or their replacement with alternative sequences. This method is potentially transferable to all fungal strains where protoplasts can be obtained from.
  •  
9.
  • Viggiano, Annarita, et al. (författare)
  • Pathway for the biosynthesis of the pigment chrysogine by Penicillium chrysogenum
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - 1098-5336 .- 0099-2240. ; 84:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chrysogine is a yellow pigment produced by Penicillium chrysogenum and other filamentous fungi. Although the pigment was first isolated in 1973, its biosynthetic pathway has so far not been resolved. Here, we show that deletion of the highly expressed nonribosomal peptide synthetase (NRPS) gene Pc21g12630 (chyA) resulted in a decrease in the production of chrysogine and 13 related compounds in the culture broth of P. chrysogenum. Each of the genes of the chyAcontaining gene cluster was individually deleted, and corresponding mutants were examined by metabolic profiling in order to elucidate their function. The data suggest that the NRPS ChyA mediates the condensation of anthranilic acid and alanine into the intermediate 2-(2-aminopropanamido)benzoic acid, which was verified by feeding experiments of a ΔchyA strain with the chemically synthesized product. The remainder of the pathway is highly branched, yielding at least 13 chrysogine-related compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy