SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Duan Mao li) srt2:(2020-2023)"

Sökning: WFRF:(Duan Mao li) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Li, C. -Y, et al. (författare)
  • Observation of inhomogeneous plasmonic field distribution in a nanocavity
  • 2020
  • Ingår i: Nature Nanotechnology. - : Nature Research. - 1748-3387 .- 1748-3395.
  • Tidskriftsartikel (refereegranskat)abstract
    • The progress of plasmon-based technologies relies on an understanding of the properties of the enhanced electromagnetic fields generated by the coupling nanostrucutres1–6. Plasmon-enhanced applications include advanced spectroscopies7–10, optomechanics11, optomagnetics12 and biosensing13–17. However, precise determination of plasmon field intensity distribution within a nanogap remains challenging. Here, we demonstrate a molecular ruler made from a set of viologen-based, self-assembly monolayers with which we precisely measures field distribution within a plasmon nanocavity with ~2-Å spatial resolution. We observed an unusually large plasmon field intensity inhomogeneity that we attribute to the formation of a plasmonic comb in the nanocavity. As a consequence, we posit that the generally adopted continuous media approximation for molecular monolayers should be used carefully.
  •  
3.
  • He, Yan, et al. (författare)
  • Discovering Optimal Triplets for Assessing the Uncertainties of Satellite-Derived Evapotranspiration Products
  • 2023
  • Ingår i: Remote Sensing. - 2072-4292. ; 15:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Information relating to errors in evapotranspiration (ET) products, including satellite-derived ET products, is critical to their application but often challenging to obtain, with a limited number of flux towers available for the sufficient validation of measurements. Triple collocation (TC) methods can assess the inherent uncertainties of the above ET products using just three independent variables as a triplet input. However, both the severity with which the variables in the triplet violate the assumptions of zero error correlations and the corresponding impact on the error estimation are unknown. This study proposed a cross-correlation analysis approach to discover the optimal triplet of satellite-derived ET products with regard to providing the most reliable error estimation. All possible triple collocation solutions for the same product were first evaluated by the extended triple collocation (ETC), among which the optimum was selected based on the correlation between ETC-based and in-situ-based error metrics, and correspondingly, a statistic experiment based on ranked triplets demonstrated how the optimal triplet was valid for all pixels of the product. Six popular products (MOD16, PML_V2, GLASS, SSEBop, ERA5, and GLEAM) that were produced between 2003 to 2018 and which cover China’s mainland were chosen for the experiment, in which the error estimates were compared with measurements from 23 in-situ flux towers. The findings suggest that (1) there exists an optimal triplet in which a product as an input of TC with other collocating inputs together violate TC assumptions the least; (2) the error characteristics of the six ET products varied significantly across China, with GLASS performing the best (median error: 0.1 mm/day), followed by GLEAM, ERA5, and MOD16 (median errors below 0.2 mm/day), while PML_V2 and SSEBop had slightly higher median errors (0.24 mm/day and 0.27 mm/day, respectively); and (3) removing seasonal variations in ET signals has a substantial impact on enhancing the accuracy of error estimations.
  •  
4.
  •  
5.
  • Shah, Suraj, et al. (författare)
  • Evaluating the added value of multi-variable calibration of SWAT with remotely sensed evapotranspiration data for improving hydrological modeling
  • 2021
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 603
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrological processes in a watershed consist of multiple sub-processes (such as plant growth, evapotranspiration, water yield, and soil–water balance) that have complex interactions. The common practice of calibrating hydrological models against only a single variable (e.g., streamflow) can lead to parameter uncertainty (also known as equifinality), resulting in significant uncertainties in the representation and simulation of sub-processes. As multi-variable calibration can be a potential solution to this issue, we tested the integration of spatially and temporally gridded remotely sensed evapotranspiration (RS-ET) data with the Soil and Water Assessment Tool (SWAT) hydrological model. This approach was intended to reduce equifinality by enhancing related hydrological sub-processes in both space and time rather than improving the evaluation metrics at the streamflow outlet. We further introduced the principle of repeated measure design in the calibration process, where the SWAT was calibrated under two different schemes: Scheme1 (using only streamflow data) and Scheme2 (using both RS-ET and streamflow data). The model's performance was evaluated using the concept of stability at multiple spatial scales (basin outlet, sub-basins, and hydrological response units) and aspects (different model outputs and most sensitive calibrated parameters). The significance of the difference between the stabilities produced by the two schemes was estimated using the Mann–Whitney U test. Testing this approach in Meichuan Basin (China) showed that Scheme2 substantially reduced equifinality for calibrated parameters and model outputs compared to Scheme1. In addition, the model solutions and outputs for Scheme2 were significantly different from Scheme1. Our results demonstrate the added value of using increasingly available open-access RS-ET data for improving hydrological model calibration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy