SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dunbar M. B.) srt2:(2010-2014)"

Sökning: WFRF:(Dunbar M. B.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bayley, PJ, et al. (författare)
  • 2013 SYR Accepted Poster Abstracts
  • 2013
  • Ingår i: International journal of yoga therapy. - 1531-2054. ; 23:1, s. 32-53
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Bentley, Michael J., et al. (författare)
  • A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum
  • 2014
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 100, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse la. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.
  •  
3.
  •  
4.
  • Reeves, Jessica M., et al. (författare)
  • Palaeoenvironmental change in tropical Australasia over the last 30,000 years - a synthesis by the OZ-INTIMATE group
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 74, s. 97-114
  • Tidskriftsartikel (refereegranskat)abstract
    • The tropics are the major source of heat and moisture for the Australasian region. Determining the tropics' response over time to changes in climate forcing mechanisms, such as summer insolation, and the effects of relative sea level on exposed continental shelves during the Last Glacial period, is an ongoing process of re-evaluation. We present a synthesis of climate proxy data from tropical Australasia spanning the last 30,000 years that incorporates deep sea core, coral, speleothem, pollen, charcoal and terrestrial sedimentary records. Today, seasonal variability is governed largely by the annual migration of the inter-tropical convergence zone (ITCZ), influencing this region most strongly during the austral summer. However, the position of the ITCZ has varied through time. Towards the end of Marine Isotope Stage (MIS) 3, conditions were far wetter throughout the region, becoming drier first in the south. Universally cooler land and sea-surface temperature (SST) were characteristic of the Last Glacial Maximum, with drier conditions than previously, although episodic wet periods are noted in the fluvial records of northern Australia. The deglacial period saw warming first in the Coral Sea and then the Indonesian seas, with a pause in this trend around the time of the Antarctic Cold Reversal (c. 14.5 ka), coincident with the flooding of the Sunda Shelf. Wetter conditions occurred first in Indonesia around 17 ka and northern Australia after 14 ka. The early Holocene saw a peak in marine SST to the northwest and northeast of Australia. Modern vegetation was first established on Indonesia, then progressively south and eastward to NE Australia. Flores and the Atherton Tablelands show a dry period around 11.6 ka, steadily becoming wetter through the early Holocene. The mid-late Holocene was punctuated by millennial-scale variability, associated with the El Nino-Southern Oscillation; this is evident in the marine, coral, speleothem and pollen records of the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy