SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Durante M) srt2:(2015-2019)"

Sökning: WFRF:(Durante M) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Athan, E., et al. (författare)
  • Influence of vancomycin minimum inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus left-sided infective endocarditis treated with antistaphylococcal β-lactam antibiotics: a prospective cohort study by the International Collaboration on Endocarditis
  • 2017
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier BV. - 1198-743X .- 1469-0691. ; 23, s. 544-549
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 European Society of Clinical Microbiology and Infectious Diseases Objectives Left-sided methicillin-susceptible Staphylococcus aureus (MSSA) endocarditis treated with cloxacillin has a poorer prognosis when the vancomycin minimum inhibitory concentration (MIC) is ≥1.5 mg/L. We aimed to validate this using the International Collaboration on Endocarditis cohort and to analyse whether specific genetic characteristics were associated with a high vancomycin MIC (≥1.5 mg/L) phenotype. Methods All patients with left-sided MSSA infective endocarditis treated with antistaphylococcal β-lactam antibiotics between 2000 and 2006 with available isolates were included. Vancomycin MIC was determined by Etest as either high (≥1.5 mg/L) or low (<1.5 mg/L). Isolates underwent spa typing to infer clonal complexes and multiplex PCR for identifying virulence genes. Univariate analysis was performed to evaluate the association between in-hospital and 1-year mortality, and vancomycin MIC phenotype. Results Sixty-two cases met the inclusion criteria. Vancomycin MIC was low in 28 cases (45%) and high in 34 cases (55%). No significant differences in patient demographic data or characteristics of infection were observed between patients with infective endocarditis due to high and low vancomycin MIC isolates. Isolates with high and low vancomycin MIC had similar distributions of virulence genes and clonal lineages. In-hospital and 1-year mortality did not differ significantly between the two groups (32% (9/28) vs. 27% (9/34), p 0.780; and 43% (12/28) vs. 29% (10/34), p 0.298, for low and high vancomycin MIC respectively). Conclusions In this international cohort of patients with left-sided MSSA endocarditis treated with antistaphylococcal β-lactams, vancomycin MIC phenotype was not associated with patient demographics, clinical outcome or virulence gene repertoire.
  •  
3.
  • Toppi, M., et al. (författare)
  • Measurement of fragmentation cross sections of C-12 ions on a thin gold target with the FIRST apparatus
  • 2016
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 93:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a C-12 ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (theta less than or similar to 6 degrees), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The C-12 ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.
  •  
4.
  • Kreuzer, M., et al. (författare)
  • Multidisciplinary European Low Dose Initiative (MELODI) : strategic research agenda for low dose radiation risk research
  • 2018
  • Ingår i: Radiation and Environmental Biophysics. - : Springer Science and Business Media LLC. - 0301-634X .- 1432-2099. ; 57:1, s. 5-15
  • Forskningsöversikt (refereegranskat)abstract
    • MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html).
  •  
5.
  • Durante, M., et al. (författare)
  • All the fun of the FAIR: fundamental physics at the facility for antiproton and ion research
  • 2019
  • Ingår i: Physica Scripta. - : IOP Publishing. - 1402-4896 .- 0031-8949. ; 94:3
  • Forskningsöversikt (refereegranskat)abstract
    • The Facility for Antiproton and Ion Research (FAIR) will be the accelerator-based flagship research facility in many basic sciences and their applications in Europe for the coming decades. FAIR will open up unprecedented research opportunities in hadron and nuclear physics, in atomic physics and nuclear astrophysics as well as in applied sciences like materials research, plasma physics and radiation biophysics with applications towards novel medical treatments and space science. FAIR is currently under construction as an international facility at the campus of the GSI Helmholtzzentrum for Heavy-Ion Research in Darmstadt, Germany. While the full science potential of FAIR can only be harvested once the new suite of accelerators and storage rings is completed and operational, some of the experimental detectors and instrumentation are already available and will be used starting in summer 2018 in a dedicated research program at GSI, exploiting also the significantly upgraded GSI accelerator chain. The current manuscript summarizes how FAIR will advance our knowledge in various research fields ranging from a deeper understanding of the fundamental interactions and symmetries in nature to a better understanding of the evolution of the Universe and the objects within.
  •  
6.
  • Stoehlker, Th., et al. (författare)
  • APPA at FAIR : From fundamental to applied research
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 235, s. 680-685
  • Tidskriftsartikel (refereegranskat)abstract
    • FAIR with its intense beams of ions and antiprotons provides outstanding and worldwide unique experimental conditions for extreme matter research in atomic and plasma physics and for application oriented research in biophysics, medical physics and materials science. The associated research programs comprise interaction of matter with highest electromagnetic fields, properties of plasmas and of solid matter under extreme pressure, density, and temperature conditions, simulation of galactic cosmic radiation, research in nanoscience and charged particle radiotherapy. A broad variety of APPA-dedicated facilities including experimental stations, storage rings, and traps, equipped with most sophisticated instrumentation will allow the APPA community to tackle new challenges. The worldwide most intense source of slow antiprotons will expand the scope of APPA related research to the exciting field of antimatter.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy