SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Durr H.) srt2:(2015-2019)"

Sökning: WFRF:(Durr H.) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gray, A. X., et al. (författare)
  • Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium dioxide (VO2), an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally driven physics. Using ultrafast temperature- and fluence-dependent optical spectroscopy and x-ray scattering, we show that multiple interrelated electronic and structural processes in the nonequilibrium dynamics in VO2 can be disentangled in the time domain. Specifically, following intense subpicosecond terahertz (THz) electric-field excitation, a partial collapse of the insulating gap occurs within the first picosecond. At temperatures sufficiently close to the transition temperature and for THz peak fields above a threshold of approximately 1 MV/cm, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a promising method to control electronic and structural interactions in correlated materials on an ultrafast timescale.
  •  
2.
  • Bonetti, Stefano, et al. (författare)
  • Direct observation and imaging of a spin-wave soliton with p−like symmetry
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The prediction and realization of magnetic excitations driven by electrical currents via the spin transfer torque effect, enables novel magnetic nano-devices where spin-waves can be used to process and store information. The functional control of such devices relies on understanding the properties of non-linear spin-wave excitations. It has been demonstrated that spin waves can show both an itinerant character, but also appear as localized solitons. So far, it was assumed that localized solitons have essentially cylindrical, s−like symmetry. Using a newly developed high-sensitivity time-resolved magnetic x-ray microscopy, we instead observe the emergence of a novel localized soliton excitation with a nodal line, i.e. with p−like symmetry. Micromagnetic simulations identify the physical mechanism that controls the transition from s− to p−like solitons. Our results suggest a potential new pathway to design artificial atoms with tunable dynamical states using nanoscale magnetic devices.
  •  
3.
  • Bonetti, Stefano, et al. (författare)
  • THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (similar to 30 fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.
  •  
4.
  • Henighan, T., et al. (författare)
  • Generation mechanism of terahertz coherent acoustic phonons in Fe
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 93:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is similar to 100 fs. An effective electronic Gruneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.
  •  
5.
  • Iacocca, Ezio, 1986, et al. (författare)
  • Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 10 7 A cm −2 . Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.
  •  
6.
  • Lutman, A. A., et al. (författare)
  • Polarization control in an X-ray free-electron laser
  • 2016
  • Ingår i: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 10:7, s. 468-472
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500-1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98(+0.02)(-0.04) at 707 eV and may be scanned in energy. We also present a new two-colour X-ray pump-X-ray probe operating mode for the LCLS. Energy differences of Delta E/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.
  •  
7.
  • Reid, A. H., et al. (författare)
  • Beyond a phenomenological description of magnetostriction
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the subpicosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.
  •  
8.
  • Chen, Z., et al. (författare)
  • Ultrafast Self-Induced X-Ray Transparency and Loss of Magnetic Diffraction
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Using ultrafast similar or equal to 2.5 fs and similar or equal to 25 fs self-amplified spontaneous emission pulses of increasing intensity and a novel experimental scheme, we report the concurrent increase of stimulated emission in the forward direction and loss of out-of-beam diffraction contrast for a Co/Pd multilayer sample. The experimental results are quantitatively accounted for by a statistical description of the pulses in conjunction with the optical Bloch equations. The dependence of the stimulated sample response on the incident intensity, coherence time, and energy jitter of the employed pulses reveals the importance of increased control of x-ray free electron laser radiation.
  •  
9.
  • Erhart, P., et al. (författare)
  • Finite Element Analysis in Asymptomatic, Symptomatic, and Ruptured Abdominal Aortic Aneurysms : In Search of New Rupture Risk Predictors
  • 2015
  • Ingår i: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884 .- 1532-2165. ; 49:3, s. 239-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). Study design: Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. Materials and methods: From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. Results: PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture: Conclusions: From different FEA derived parameter, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.
  •  
10.
  • Higley, Daniel J., et al. (författare)
  • Femtosecond X-ray induced changes of the electronic and magnetic response of solids from electron redistribution
  • 2019
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonant X-ray absorption, where an X-ray photon excites a core electron into an unoccupied valence state, is an essential process in many standard X-ray spectroscopies. With increasing X-ray intensity, the X-ray absorption strength is expected to become nonlinear. Here, we report the onset of such a nonlinearity in the resonant X-ray absorption of magnetic Co/Pd multilayers near the Co L-3 edge. The nonlinearity is directly observed through the change of the absorption spectrum, which is modified in less than 40 fs within 2 eV of its threshold. This is interpreted as a redistribution of valence electrons near the Fermi level. For our magnetic sample this also involves mixing of majority and minority spins, due to sample demagnetization. Our findings reveal that nonlinear X-ray responses of materials may already occur at relatively low intensities, where the macroscopic sample is not destroyed, providing insight into ultrafast charge and spin dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy