SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Dwibedi Chinmay Kumar) srt2:(2016)"

Search: WFRF:(Dwibedi Chinmay Kumar) > (2016)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dwibedi, Chinmay Kumar, et al. (author)
  • Long-range dispersal moved Francisella tularensis into Western Europe from the East
  • 2016
  • In: Microbial Genomics. - : Microbiology Society. - 2057-5858. ; 2:12
  • Journal article (peer-reviewed)abstract
    • For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n= 205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n= 195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.
  •  
2.
  • Karah, Nabil, et al. (author)
  • Novel Aminoglycoside Resistance Transposons and Transposon-Derived Circular Forms Detected in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates
  • 2016
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 60:3, s. 1801-1818
  • Journal article (peer-reviewed)abstract
    • Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to bla(OXA-23) (20 isolates), bla(OXA-24/40-like) (6 isolates), bla(OXA-467) (1 isolate), and ISAba1-bla(OXA-69) (1 isolate). Ceftazidime resistance was associated with bla(PER-7) in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, Delta Tn6279, Ab-ST3- aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite trans-posons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view