SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Earon Robert) srt2:(2014)"

Sökning: WFRF:(Earon Robert) > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Earon, Robert, et al. (författare)
  • Groundwater Resources Potential in Hard Rock Terrain : A Multivariate Approach
  • 2014
  • Ingår i: Ground Water. - : John Wiley & Sons. - 0017-467X .- 1745-6584.
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater resources are limited and difficult to predict in crystalline bedrock due to heterogeneity and anisotropy in rock fracture systems. Municipal-level governments often lack the resources for traditional hydrogeological tests when planning for sustainable use of water resources. A new methodology for assessing groundwater resources potential (GRP) based on geological and topographical factors using principal component analysis (PCA) and analysis of variance (ANOVA) was developed and tested. ANOVA results demonstrated statistically significant differences in classed variable groups as well as in classed GRP scores with regard to hydrogeological indicators, such as specific capacity (SC) and transmissivity. Results of PCA were used to govern the weight of the variables used in the prediction maps. GRP scores were able to identify 79% of wells in a verification dataset, which had SC values less than the total dataset median. GRP values showed statistically significant correlations using both parametric (using transformed datasets) and non-parametric methods. The method shows promise for municipal or regional level planning in crystalline terrains with high levels of heterogeneity and anisotropy as a hydrogeologically and statistically based tool to assist in assessing groundwater resources. The methodology is executed in a geographic information systems environment, and uses often readily available data, such as geological maps, feature maps and topography, and thus does not require expensive and time-consuming aquifer tests.
  •  
2.
  • Earon, Robert (författare)
  • Water supply in hard rock coastal regions : The effect of heterogeneity and kinematic porosity
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Water resources in hard rock terrain are difficult to characterize due to heterogeneity and anisotropy in the fracture network, low porosities and limited recharge volumes available during the summer season. Three methods were developed and evaluated in order to assist in water supply planning. A groundwater resources potential index was estimated using multivariate statistics, where physical and geological variables were classified using Analysis of Variance and Fisher's Least Significant Difference tests according to their effect on hydraulic properties. Principal component analysis was used to assign weights to the different classed variables. Classes and weights were used to produce an index referred to as groundwater resources potential (GRP), which correlated significantly with well data. Nearly 80% of the wells with less than median specific capacity values also had GRP values at those locations of zero or lower. Non-stationary variance was observed in specific capacity sub-samples taken from the Geological Survey of Sweden's well archive, despite homogeneous geology and topography. Spatial statistical analyses showed that spatial correlations were weak in well archive samples, implying that regional approximations based on sparse point data are highly error prone. Kinematic porosity estimated using superficial fracture measurements correlated significantly with well archive data. However, low correlation coefficients indicated that well data is likely not a suitable method for predicting water supply characteristics. This approach is an efficient method which shows promise in preliminary estimations of groundwater storage in heterogenic terrains. A groundwater balance model which describes seasonal groundwater storage changes was created in order to better approximate the groundwater situation often found in Swedish urbanized and semi-urbanized hard rock terrains. The model was based on a water budget approach at the pixel scale, and allows for approximation of well extraction which is not uniformly distributed in space. The model showed that in specific regions groundwater extraction may lead to severe decreases in groundwater level, where these impacts may not otherwise be expected. Dry season modelling with 10% increased evapotranspiration showed that in several areas groundwater reservoir depletion may be influenced by more than 50%.
  •  
3.
  • Karlsson, Caroline, et al. (författare)
  • Comparison of methods for predicting regolith thickness in previously glaciated terrain, Stockholm, Sweden
  • 2014
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061 .- 1872-6259. ; 226, s. 116-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about regolith thickness is important in several civil and environmental engineering fields. However, subsurface characteristics such as regolith thickness are difficult to determine through surface investigations and maps at regional scales. This paper presents four methods for estimating regolith thickness in a GIS environment for previously glaciated terrain with high frequency of rock outcrops: linear regression (LR) using topographical covariates; inverse distance weighting (IOW) interpolation of regolith thickness point data from well drillings: a trigonometrical approach (TA) developed for this study which uses outcrop slopes and distance between outcrops; and a simplified regolith model (SRM). The SRM is a model modified from TA which estimates the regolith thickness based on outcrops, slopes and the distance to outcrops in eight directions. The methods were compared for three study areas (Tyreso, Vallentuna and Osteraker) in Stockholm County, Sweden. Based on the results in this paper, LR proved to be the most accurate method for regolith thickness estimation, measured through root mean square error values. Whereas IDW was the most accurate method in terms of error within 2 m, which would make it a suitable model if and when large datasets of regolith point data are available. When drilling data is scarce then both the TA and SRM methods can be used for regolith estimations. However, the SRM proved to be a more accurate regolith thickness model compared to TA. SRM shows promising results and could be used at a preliminary stage in engineering projects where little or no data is available prior to detailed field investigations in previously glaciated terrain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy