SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eckardt L.) srt2:(2020-2023)"

Sökning: WFRF:(Eckardt L.) > (2020-2023)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
3.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
4.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
5.
  • Schlosser, P, et al. (författare)
  • Meta-analyses identify DNA methylation associated with kidney function and damage
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7174-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.
  •  
6.
  •  
7.
  • Tin, A, et al. (författare)
  • Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7173-
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.
  •  
8.
  • Werdan, K., et al. (författare)
  • Curriculum Kardiologie 2., aktualisierte Auflage
  • 2020
  • Ingår i: KARDIOLOGE. - : SPRINGER HEIDELBERG. - 1864-9718 .- 1864-9726. ; 14:6, s. 505-536
  • Tidskriftsartikel (refereegranskat)abstract
    • The updated second edition of the "Curriculum cardiology", first edition 2013, aims to show which competences a cardiologist should nowadays master. It is very pleasing that in this second edition representatives of the Young German Cardiac Society (Young DGK) have contributed as authors. The increasing specialization within cardiology should, however, only represent one side of the coin: there must also still be a common foundation of cardiology, embedded in the discipline "internal medicine". This foundation includes the basis of theoretical knowledge, practical skills (competence levels I-III) and an occupational and professional attitude of the (prospective) cardiologist. New additions to the advanced training since the first edition of the curriculum in 2013 are, for example a chapter on digital cardiology, the further training in psychocardiology, which was newly introduced into the model further training regulations and finally also the explicit formulation of shared decision making in the interests of cardiac patients. The curriculum should give the prospective cardiologist the possibility to structure the further training as efficiently as possible and ultimately to retain and expand that which has been learned in the sense of a "professional lifelong" qualification. The curriculum also aims to reach the trainers and the Medical Councils and demonstrate which contents and skills should be mediated in the further training to become a cardiologist from the perspective of the German Cardiac Society (DGK).
  •  
9.
  • Winkler, TW, et al. (författare)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
10.
  • Catar, R, et al. (författare)
  • Expanded Hemodialysis Therapy Ameliorates Uremia-Induced Systemic Microinflammation and Endothelial Dysfunction by Modulating VEGF, TNF-α and AP-1 Signaling
  • 2021
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 12, s. 774052-
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-α and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-α and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes.Translational Perspective and Graphical AbstractSystemic microinflammation, altered cytokine signaling, cardiovascular disease, and endothelial maladaptation/dysfunction are common clinical complications in dialysis patients suffering from end-stage renal disease. We studied the impact of novel improved medium-cut-off hemodialysis filters on uremia and endothelial dysfunction. We can show that uremic toxins, especially TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel improved medium-cut-off membranes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy