SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edlund Helena) srt2:(2002-2004)"

Sökning: WFRF:(Edlund Helena) > (2002-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Annicotte, Jean-Sébastien, et al. (författare)
  • Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development.
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:19, s. 6713-6124
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver receptor homolog 1 (LRH-1) and pancreatic-duodenal homeobox 1 (PDX-1) are coexpressed in the pancreas during mouse embryonic development. Analysis of the regulatory region of the human LRH-1 gene demonstrated the presence of three functional binding sites for PDX-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed that PDX-1 bound to the LRH-1 promoter, both in cultured cells in vitro and during pancreatic development in vivo. Retroviral expression of PDX-1 in pancreatic cells induced the transcription of LRH-1, whereas reduced PDX-1 levels by RNA interference attenuated its expression. Consistent with direct regulation of LRH-1 expression by PDX-1, PDX-1(-/-) mice expressed smaller amounts of LRH-1 mRNA in the embryonic pancreas. Taken together, our data indicate that PDX-1 controls LRH-1 expression and identify LRH-1 as a novel downstream target in the PDX-1 regulatory cascade governing pancreatic development, differentiation, and function.
  •  
2.
  • Crabtree, Judy S, et al. (författare)
  • Of mice and MEN1 : Insulinomas in a conditional mouse knockout.
  • 2003
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 23:17, s. 6075-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with multiple endocrine neoplasia type 1 (MEN1) develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and endocrine pancreas, due to the inactivation of the MEN1 gene. A conditional mouse model was developed to evaluate the loss of the mouse homolog, Men1, in the pancreatic beta cell. Men1 in these mice contains exons 3 to 8 flanked by loxP sites, such that, when the mice are crossed to transgenic mice expressing cre from the rat insulin promoter (RIP-cre), exons 3 to 8 are deleted in beta cells. By 60 weeks of age, >80% of mice homozygous for the floxed Men1 gene and expressing RIP-cre develop multiple pancreatic islet adenomas. The formation of adenomas results in elevated serum insulin levels and decreased blood glucose levels. The delay in tumor appearance, even with early loss of both copies of Men1, implies that additional somatic events are required for adenoma formation in beta cells. Comparative genomic hybridization of beta cell tumor DNA from these mice reveals duplication of chromosome 11, potentially revealing regions of interest with respect to tumorigenesis.
  •  
3.
  • Hart, Alan, et al. (författare)
  • Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells.
  • 2003
  • Ingår i: Developmental Dynamics. - : Wiley. - 1058-8388 .- 1097-0177. ; 228:2, s. 185-193
  • Tidskriftsartikel (refereegranskat)abstract
    • The pancreas is an endodermally derived organ that initially appears as a dorsal and ventral protrusion of the primitive gut epithelium. The pancreatic progenitor cells present in these early pancreatic anlagen proliferate and eventually give rise to all pancreatic cell types. The fibroblast growth factor receptor (FGFR) 2b high-affinity ligand FGF10 has been linked to pancreatic epithelial cell proliferation, and we have shown previously that Notch signalling controls pancreatic cell differentiation by means of lateral inhibition. In the developing pancreas, activated intracellular Notch appears to be required for maintaining cells in the progenitor state, in part by blocking the expression of the pro-endocrine gene neurogenin 3 (ngn3), and hence endocrine cell differentiation. Here, we show that persistent expression of Fgf10 in the embryonic pancreas of transgenic mice also inhibits pancreatic cell differentiation, while stimulating pancreatic epithelial cell proliferation. We provide evidence that one of the effects of the persistent expression of Fgf10 in the developing pancreas is maintained Notch activation, which results in impaired expression of ngn3 within the pancreatic epithelium. Together, our data suggest a role for FGF10/FGFR2b signalling in regulation of pancreatic cell proliferation and differentiation and that FGF10/FGFR2b signalling affects the Notch-mediated lateral inhibition pathway.
  •  
4.
  •  
5.
  •  
6.
  • Selander, Lars, 1972-, et al. (författare)
  • Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas
  • 2002
  • Ingår i: Mechanisms of Development. - Ireland : Elsevier Science. - 0925-4773 .- 1872-6356. ; 113:2, s. 189-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell research and the prospect of stem cell based therapies depend critically on the identification of specific markers that can be used for the identification and selection of stem and progenitor cells. Nestin is expressed in neuronal progenitor cells and has also been suggested to mark multipotent pancreatic stem cells. We show here that, throughout pancreatic development, markers of pancreatic progenitor cells and differentiated pancreatic cells are expressed in E-cadherin-positive epithelial cells that do not express nestin. The data presented demonstrate that nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy