SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Edvardsson Bengt Associate Professor 1956 ) srt2:(2023)"

Sökning: WFRF:(Edvardsson Bengt Associate Professor 1956 ) > (2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrae, R., et al. (författare)
  • Gaia Data Release 3 : Analysis of the Gaia BP/RP spectra using the General Stellar Parameterizer from Photometry
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The astrophysical characterisation of sources is among the major new data products in the third Gaia Data Release (DR3). In particular, there are stellar parameters for 471 million sources estimated from low-resolution BP /RP spectra.Aims: We present the General Stellar Parameterizer from Photometry (GSP-Phot), which is part of the astrophysical parameters inference system (Apsis). GSP-Phot is designed to produce a homogeneous catalogue of parameters for hundreds of millions of single non-variable stars based on their astrometry, photometry, and low-resolution BP/RP spectra. These parameters are effective temperature, surface gravity, metallicity, absolute MG magnitude, radius, distance, and extinction for each star.Methods: GSP-Phot uses a Bayesian forward-modelling approach to simultaneously fit the BP /RP spectrum, parallax, and apparent G magnitude. A major design feature of GSP-Phot is the use of the apparent flux levels of BP /RP spectra to derive, in combination with isochrone models, tight observational constraints on radii and distances. We carefully validate the uncertainty estimates by exploiting repeat Gaia observations of the same source.Results: The data release includes GSP-Phot results for 471 million sources with G < 19. Typical differences to literature values are 110K for T-eff and 0.2-0.25 for log g, but these depend strongly on data quality. In particular, GSP-Phot results are significantly better for stars with good parallax measurements (pi/sigma(pi) > 20), mostly within 2 kpc. Metallicity estimates exhibit substantial biases compared to literature values and are only useful at a qualitative level. However, we provide an empirical calibration of our metallicity estimates that largely removes these biases. Extinctions A(0) and A(BP) show typical di fferences from reference values of 0.07-0.09 mag. MCMC samples of the parameters are also available for 95% of the sources.Conclusions: GSP-Phot provides a homogeneous catalogue of stellar parameters, distances, and extinctions that can be used for various purposes, such as sample selections (OB stars, red giants, solar analogues etc.). In the context of asteroseismology or ground-based interferometry, where targets are usually bright and have good parallax measurements, GSP-Phot results should be particularly useful for combined analysis or target selection.
  •  
2.
  • Creevey, O. L., et al. (författare)
  • Gaia Data Release 3 : Astrophysical parameters inference system (Apsis). I. Methods and content overview
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Gaia Data Release 3 contains a wealth of new data products for the community. Astrophysical parameters are a major component of this release, and were produced by the Astrophysical parameters inference system (Apsis) within the Gaia Data Processing and Analysis Consortium (DPAC). The aim of this paper is to describe the overall content of the astrophysical parameters in Gaia DR3 and how they were produced. In Apsis, we use the mean BP /RP and mean RVS spectra along with astrometry and photometry, and we derive the following parameters: source classification and probabilities for 1.6 billion objects; interstellar medium characterisation and distances for up to 470 million sources, including a 2D total Galactic extinction map; 6 million redshifts of quasar candidates; 1.4 million redshifts of galaxy candidates; and an analysis of 50 million outlier sources through an unsupervised classification. The astrophysical parameters also include many stellar spectroscopic and evolutionary parameters for up to 470 million sources. These comprise T-eff, log g, and [M /H] (470 million using BP /RP, 6 million using RVS), radius (470 million), mass (140 million), age (120 million), chemical abundances (up to 5 million), diffuse interstellar band analysis (0.5 million), activity indices (2 million), H ff equivalent widths (200 million), and further classification of spectral types (220 million) and emission-line stars (50 000). This paper is the first in a series of three papers, and focusses on describing the global content of the parameters in Gaia DR3. The accompanying Papers II and III focus on the validation and use of the stellar and non-stellar products, respectively. This catalogue is the most extensive homogeneous database of astrophysical parameters to date, and is based uniquely on Gaia data. It will only be superseded by Gaia Data Release 4, and will therefore remain a key reference over the next four years, providing astrophysical parameters independent of other ground- and space-based data.
  •  
3.
  • Delchambre, L., et al. (författare)
  • Apsis. III. Non-stellar content and source classification
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: As part of the third Gaia Data Release, we present the contributions of the non-stellar and classification modules from the eighth coordination unit (CU8) of the Data Processing and Analysis Consortium, which is responsible for the determination of source astrophysical parameters using Gaia data. This is the third in a series of three papers describing the work done within CU8 for this release.Aims: For each of the five relevant modules from CU8, we summarise their objectives, the methods they employ, their performance, and the results they produce for Gaia DR3. We further advise how to use these data products and highlight some limitations.Methods: The Discrete Source Classifier (DSC) module provides classification probabilities associated with five types of sources: quasars, galaxies, stars, white dwarfs, and physical binary stars. A subset of these sources are processed by the Outlier Analysis (OA) module, which performs an unsupervised clustering analysis, and then associates labels with the clusters to complement the DSC classification. The Quasi Stellar Object Classifier (QSOC) and the Unresolved Galaxy Classifier (UGC) determine the redshifts of the sources classified as quasar and galaxy by the DSC module. Finally, the Total Galactic Extinction (TGE) module uses the extinctions of individual stars determined by another CU8 module to determine the asymptotic extinction along all lines of sight for Galactic latitudes |b| > 5 degrees.Results: Gaia DR3 includes 1591 million sources with DSC classifications; 56 million sources to which the OA clustering is applied; 1.4 million sources with redshift estimates from UGC; 6.4 million sources with QSOC redshift; and 3.1 million level 9 HEALPixes of size 0 :013 deg(2) where the extinction is evaluated by TGE.Conclusions: Validation shows that results are in good agreement with values from external catalogues; for example 90% of the QSOC redshifts have absolute error lower than 0:1 for sources with empty warning flags, while UGC redshifts have a mean error of 0:008 +/- 0:037 if evaluated on a clean set of spectra. An internal validation of the OA results further shows that 30 million sources are located in high confidence regions of the clustering map.
  •  
4.
  • Lanzafame, A. C., et al. (författare)
  • Gaia Data Release 3 : Stellar chromospheric activity and mass accretion from Ca II IRT observed by the Radial Velocity Spectrometer
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Gaia Radial Velocity Spectrometer (RVS) provides the unique opportunity of a spectroscopic analysis of millions of stars at medium resolution (lambda/Delta lambda similar to 11 500) in the near-infrared (845 872 nm). This wavelength range includes the Ca ii infrared triplet (IRT) at 850.03, 854.44, and 866.45 nm, which is a good indicator of magnetic activity in the chromosphere of late-type stars.Aims: Here we present the method devised for inferring the Gaia stellar activity index from the analysis of the Ca ii IRT in the RVS spectrum, together with its scientific validation.Methods: The Gaia stellar activity index is derived from the Ca ii IRT excess equivalent width with respect to a reference spectrum, taking the projected rotational velocity (v sin i) into account. We performed scientific validation of the Gaia stellar activity index by deriving a R'(IRT) index, which is largely independent of the photospheric parameters, and considering the correlation with the R'(HK) index for a sample of stars. A sample of well-studied pre-main-sequence (PMS) stars is considered to identify the regime in which the Gaia stellar activity index may be a ffected by mass accretion. The position of these stars in the colour-magnitude diagram and the correlation with the amplitude of the photometric rotational modulation is also scrutinised.Results: Gaia DR3 contains a stellar activity index derived from the Ca ii IRT for some 2 x 10(6) stars in the Galaxy. This represents a `gold mine' for studies on stellar magnetic activity and mass accretion in the solar vicinity. Three regimes of the chromospheric stellar activity are identified, confirming suggestions made by previous authors based on much smaller R-HK(') datasets. The highest stellar activity regime is associated with PMS stars and RS CVn systems, in which activity is enhanced by tidal interaction. Some evidence of a bimodal distribution in main sequence (MS) stars with T-eff >= 5000K is also found, which defines the two other regimes, without a clear gap in between. Stars with 3500K. T-e ff <= 5000K are found to be either very active PMS stars or active MS stars with a unimodal distribution in chromospheric activity. A dramatic change in the activity distribution is found for T-e ff <= 3500 K, with a dominance of low activity stars close to the transition between partially- and fully convective stars and a rise in activity down into the fully convective regime.
  •  
5.
  • Recio-Blanco, A., et al. (författare)
  • Chemical cartography of the Milky Way
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The motion of stars has been used to reveal details of the complex history of the Milky Way, in constant interaction with its environment. Nevertheless, to reconstruct the Galactic history puzzle in its entirety, the chemo-physical characterisation of stars is essential. Previous Gaia data releases were supported by a smaller, heterogeneous, and spatially biased mixture of chemical data from ground-based observations. Aims. Gaia Data Release 3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the Radial Velocity Spectrometer (RVS) and parametrised by the GSP-Spec module. In this work, we aim to demonstrate the scientific quality of Gaia's Milky Way chemical cartography through a chemo-dynamical analysis of disc and halo populations. Methods. Stellar atmospheric parameters and chemical abundances provided by Gaia DR3 spectroscopy are combined with DR3 radial velocities and EDR3 astrometry to analyse the relationships between chemistry and Milky Way structure, stellar kinematics, and orbital parameters. Results. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc - seen as phase space correlations - and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [alpha/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several alpha, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [alpha/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Conclusions. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day.
  •  
6.
  • Recio-Blanco, A., et al. (författare)
  • Gaia Data Release 3 : Analysis of RVS spectra using the General Stellar Parametriser from spectroscopy
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The chemo-physical parametrisation of stellar spectra is essential for understanding the nature and evolution of stars and of Galactic stellar populations. A worldwide observational effort from the ground has provided, in one century, an extremely heterogeneous collection of chemical abundances for about two million stars in total, with fragmentary sky coverage.Aims: This situation is revolutionised by the Gaia third data release (DR3), which contains the parametrisation of Radial Velocity Spectrometer (RVS) data performed by the General Stellar Parametriser-spectroscopy, GSP-Spec, module. Here we describe the parametrisation of the first 34 months of Gaia RVS observations.Methods: GSP-Spec estimates the chemo-physical parameters from combined RVS spectra of single stars, without additional inputs from astrometric, photometric, or spectro-photometric BP /RP data. The main analysis workflow described here, MatisseGauguin, is based on projection and optimisation methods and provides the stellar atmospheric parameters; the individual chemical abundances of N, Mg, Si, S, Ca, Ti, Cr, Fe i, Fe ii, Ni, Zr, Ce and Nd; the di fferential equivalent width of a cyanogen line; and the parameters of a di ffuse interstellar band (DIB) feature. Another workflow, based on an artificial neural network (ANN) and referred to with the same acronym, provides a second set of atmospheric parameters that are useful for classification control. For both workflows, we implement a detailed quality flag chain considering different error sources.Results: With about 5.6 million stars, the Gaia DR3 GSP-Spec all-sky catalogue is the largest compilation of stellar chemo-physical parameters ever published and the first one from space data. Internal and external biases have been studied taking into account the implemented flags. In some cases, simple calibrations with low degree polynomials are suggested. The homogeneity and quality of the estimated parameters enables chemo-dynamical studies of Galactic stellar populations, interstellar extinction studies from individual spectra, and clear constraints on stellar evolution models. We highly recommend that users adopt the provided quality flags for scientific exploitation.Conclusions: The Gaia DR3 GSP-Spec catalogue is a major step in the scientific exploration of Milky Way stellar populations. It will be followed by increasingly large and higher quality catalogues in future data releases, confirming the Gaia promise of a new Galactic vision.
  •  
7.
  • Vallenari, A., et al. (författare)
  • Gaia Data Release 3: Summary of the content and survey properties
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present the third data release of the European Space Agency's Gaia mission, Gaia DR3. This release includes a large variety of new data products, notably a much expanded radial velocity survey and a very extensive astrophysical characterisation of Gaia sources.Aims. We outline the content and the properties of Gaia DR3, providing an overview of the main improvements in the data processing in comparison with previous data releases (where applicable) and a brief discussion of the limitations of the data in this release.Methods. The Gaia DR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium.Results. The Gaia DR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, GBP, and G(RP) pass-bands already present in the Early Third Data Release, Gaia EDR3. Gaia DR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G(RVS) < 14 and 3100 < T-eff < 14 500, have new determinations of their mean radial velocities based on data collected by Gaia. We provide GRVS magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The Gaia DR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BP /RP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. Gaia DR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800 000 astrometric, spectroscopic and eclipsing binaries. More than 150 000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BP /RP spectral data are published for about 60 000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey, consisting of the photometric time series for all sources located in a 5:5 degree radius field centred on the Andromeda galaxy.Conclusions. This data release represents a major advance with respect to Gaia DR2 and Gaia EDR3 because of the unprecedented quantity, quality, and variety of source astrophysical data. To date this is the largest collection of all-sky spectrophotometry, radial velocities, variables, and astrophysical parameters derived from both low- and high-resolution spectra and includes a spectrophotometric and dynamical survey of SSOs of the highest accuracy. The non-single star content surpasses the existing data by orders of magnitude. The quasar host and galaxy light profile collection is the first such survey that is all sky and space based. The astrophysical information provided in Gaia DR3 will unleash the full potential of Gaia's exquisite astrometric, photometric, and radial velocity surveys.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy