SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrich Dorothee) srt2:(2015-2019)"

Sökning: WFRF:(Ehrich Dorothee) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrio, Isabel C., et al. (författare)
  • Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome
  • 2017
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 40:11, s. 2265-2278
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6-7% over the current levels with a 1 degrees C increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
  •  
2.
  •  
3.
  • Bokhorst, Stef, et al. (författare)
  • Changing Arctic snow cover : A review of recent developments and assessment of future needs for observations, modelling, and impacts
  • 2016
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 45:5, s. 516-537
  • Forskningsöversikt (refereegranskat)abstract
    • Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.
  •  
4.
  • Elmhagen, Bodil, et al. (författare)
  • Homage to Hersteinsson and Macdonald : climate warming and resource subsidies cause red fox range expansion and Arctic fox decline
  • 2017
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 0800-0395 .- 1751-8369. ; 36:suppl. 1
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change can have a marked effect on the distribution and abundance of some species, as well as their interspecific interactions. In 1992, before ecological effects of anthropogenic climate change had developed into a topical research field, Hersteinsson and Macdonald published a seminal paper hypothesizing that the northern distribution limit of the red fox (Vulpes vulpes) is determined by food availability and ultimately climate, while the southern distribution limit of the Arctic fox (Vulpes lagopus) is determined by interspecific competition with the larger red fox. This hypothesis has inspired extensive research in several parts of the circumpolar distribution range of the Arctic fox. Over the past 25 years, it was shown that red foxes can exclude Arctic foxes from dens, space and food resources, and that red foxes kill and sometimes consume Arctic foxes. When the red fox increases to ecologically effective densities, it can cause Arctic fox decline, extirpation and range contraction, while conservation actions involving red fox culling can lead to Arctic fox recovery. Red fox advance in productive tundra, concurrent with Arctic fox retreat from this habitat, support the original hypothesis that climate warming will alter the geographical ranges of the species. However, recent studies show that anthropogenic subsidies also drive red fox advance, allowing red fox establishment north of its climate-imposed distribution limit. We conclude that synergies between anthropogenic subsidies and climate warming will speed up Arctic ecosystem change, allowing mobile species to establish and thrive in human-provided refugia, with potential spill-over effects in surrounding ecosystems.
  •  
5.
  • Lagerholm, Vendela K., et al. (författare)
  • Run to the hills : gene flow among mountain areas leads to low genetic differentiation in the Norwegian lemming
  • 2017
  • Ingår i: Biological Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4066 .- 1095-8312. ; 121:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The endemic Norwegian lemming (Lemmus lemmus) is an icon for cyclic species, famous since the Middle Ages for its enormous population outbreaks and mass movements. Although the drivers behind this cyclicity have been intensively investigated, virtually nothing is known about the extent to which long-distance dispersal during population peaks actually lead to gene flow among mountain tundra areas. In this article, we use nine microsatellite markers to address this question and analyse range-wide genetic diversity and differentiation between Fennoscandian sub-regions. The results revealed a high genetic variation with a surprisingly weak population structure, comparable to that of much larger mammals. The differentiation was mainly characterized as a genetic cline across the species' entire distribution, and results from spatial autocorrelation analyses suggested that gene flow occurs with sufficiently high frequency to create a genetic patch size of 100 km. Further, we found that for the equivalent distances, the southern sub-regions were genetically more similar to each other than those in the north, which indicates that the prolonged periods of interrupted lemming cyclicity recorded in the northern parts of Fennoscandia have led to increased isolation and population differentiation. In summary, we propose that mass movements during peak years act as pulses of gene flow between mountain tundra areas, and that these help to maintain genetic variation and counteract differentiation over vast geographic distances.
  •  
6.
  • Rheubottom, Sarah, I, et al. (författare)
  • Hiding in the background : community-level patterns in invertebrate herbivory across the tundra biome
  • 2019
  • Ingår i: Polar Biology. - : Springer. - 0722-4060 .- 1432-2056. ; 42:10, s. 1881-1897
  • Tidskriftsartikel (refereegranskat)abstract
    • Invertebrate herbivores depend on external temperature for growth and metabolism. Continued warming in tundra ecosystems is proposed to result in increased invertebrate herbivory. However, empirical data about how current levels of invertebrate herbivory vary across the Arctic is limited and generally restricted to a single host plant or a small group of species, so predicting future change remains challenging. We investigated large-scale patterns of invertebrate herbivory across the tundra biome at the community level and explored how these patterns are related to long-term climatic conditions and year-of-sampling weather, habitat characteristics, and aboveground biomass production. Utilizing a standardized protocol, we collected samples from 92 plots nested within 20 tundra sites during summer 2015. We estimated the community-weighted biomass lost based on the total leaf area consumed by invertebrates for the most common plant species within each plot. Overall, invertebrate herbivory was prevalent at low intensities across the tundra, with estimates averaging 0.94% and ranging between 0.02 and 5.69% of plant biomass. Our results suggest that mid-summer temperature influences the intensity of invertebrate herbivory at the community level, consistent with the hypothesis that climate warming should increase plant losses to invertebrates in the tundra. However, most of the observed variation in herbivory was associated with other site level characteristics, indicating that other local ecological factors also play an important role. More details about the local drivers of invertebrate herbivory are necessary to predict the consequences for rapidly changing tundra ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Ehrich, Dorothee (6)
Jónsdóttir, Ingibjor ... (4)
Alatalo, Juha M. (3)
Olofsson, Johan (3)
Speed, James D. M. (3)
Barrio, Isabel C. (3)
visa fler...
Hik, David S. (3)
Andersson, Tommi (3)
Lévesque, Esther (3)
Forbes, Bruce C. (2)
Grogan, Paul (2)
Schmidt, Niels Marti ... (2)
Angerbjörn, Anders (2)
Norén, Karin (2)
Sokolov, Alexander (2)
Henttonen, Heikki (2)
Ims, Rolf A. (2)
Myers-Smith, Isla (2)
Soininen, Eeva M. (2)
Lindén, Elin (2)
Te Beest, Mariska (2)
Rocha, Adrian (2)
Asmus, Ashley (2)
Boike, Julia (2)
Bryant, John P. (2)
Buchwal, Agata (2)
Bueno, C. Guillermo (2)
Christie, Katherine ... (2)
Denisova, Yulia V. (2)
Egelkraut, Dagmar (2)
Fishback, LeeAnn (2)
Gartzia, Maite (2)
Hallinger, Martin (2)
Heijmans, Monique M. ... (2)
Hofgaard, Annika (2)
Holmgren, Milena (2)
Høye, Toke T. (2)
Huebner, Diane C. (2)
Kumpula, Timo (2)
Lange, Cynthia Y. M. ... (2)
Lange, Jelena (2)
Limpens, Juul (2)
Macias-Fauria, Marc (2)
van Nieukerken, Erik ... (2)
Normand, Signe (2)
Post, Eric S. (2)
Sitters, Judith (2)
Skoracka, Anna (2)
Sokolova, Natalya (2)
Street, Lorna E. (2)
visa färre...
Lärosäte
Umeå universitet (3)
Stockholms universitet (3)
Uppsala universitet (1)
Lunds universitet (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy