SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eickelberg Oliver) srt2:(2012-2014)"

Sökning: WFRF:(Eickelberg Oliver) > (2012-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Krauss-Etschmann, Susanne, et al. (författare)
  • Of flies, mice and men : a systematic approach to understanding the early life origins of chronic lung disease
  • 2013
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 68:4, s. 380-384
  • Forskningsöversikt (refereegranskat)abstract
    • Despite intensive research efforts, the aetiology of the majority of chronic lung diseases (CLD) in both, children and adults, remains elusive. Current therapeutic options are limited, providing only symptomatic relief, rather than treating the underlying condition, or preventing its development in the first place. Thus, there is a strong and unmet clinical need for the development of both, novel effective therapies and preventative strategies for CLD. Many studies suggest that modifications of prenatal and/or early postnatal lung development will have important implications for future lung function and risk of CLD throughout life. This view represents a fundamental change of current pathophysiological concepts and treatment paradigms, and holds the potential to develop novel preventative and/or therapeutic strategies. However, for the successful development of such approaches, key questions, such as a clear understanding of underlying mechanisms of impaired lung development, the identification and validation of relevant preclinical models to facilitate translational research, and the development of concepts for correction of aberrant development, all need to be solved. Accordingly, a European Science Foundation Exploratory Workshop was held where clinical, translational and basic research scientists from different disciplines met to discuss potential mechanisms of developmental origins of CLD, and to identify major knowledge gaps in order to delineate a roadmap for future integrative research.
  •  
2.
  • Meinel, Felix G., et al. (författare)
  • Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods: Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results: Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion: In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections.
  •  
3.
  •  
4.
  • Schleede, Simone, et al. (författare)
  • Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 109:44, s. 17880-17885
  • Tidskriftsartikel (refereegranskat)abstract
    • In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs.
  •  
5.
  • Schwab, Felix, et al. (författare)
  • Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue
  • 2013
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 23:3, s. 236-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF /CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all Rats (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI.
  •  
6.
  • Yaroshenko, Andre, et al. (författare)
  • Pulmonary Emphysema Diagnosis with a Preclinical Small-Animal X-ray Dark-Field Scatter-Contrast Scanner
  • 2013
  • Ingår i: Radiology. - : Radiological Society of North America (RSNA). - 1527-1315 .- 0033-8419. ; 269:2, s. 426-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To test the hypothesis that the joint distribution of x-ray transmission and dark-field signals obtained with a compact cone-beam preclinical scanner with a polychromatic source can be used to diagnose pulmonary emphysema in ex vivo murine lungs. Materials and Methods: The animal care committee approved this study. Three excised murine lungs with pulmonary emphysema and three excised murine control lungs were imaged ex vivo by using a grating-based micro-computed tomographic (CT) scanner. To evaluate the diagnostic value, the natural logarithm of relative transmission and the natural logarithm of dark-field scatter signal were plotted on a per-pixel basis on a scatterplot. Probability density function was fit to the joint distribution by using principle component analysis. An emphysema map was calculated based on the fitted probability density function. Results: The two-dimensional scatterplot showed a characteristic difference between control and emphysematous lungs. Control lungs had lower average median logarithmic transmission (-0.29 vs -0.18, P = .1) and lower average dark-field signal (-0.54 vs -0.37, P = .1) than emphysematous lungs. The angle to the vertical axis of the fitted regions also varied significantly (7.8 degrees for control lungs vs 15.9 degrees for emphysematous lungs). The calculated emphysema distribution map showed good agreement with histologic findings. Conclusion: X-ray dark-field scatter images of murine lungs obtained with a preclinical scanner can be used in the diagnosis of pulmonary emphysema. (C) RSNA, 2013
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy