SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Einarsson G. H.) srt2:(2010-2014)"

Sökning: WFRF:(Einarsson G. H.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stacey, Simon N, et al. (författare)
  • A germline variant in the TP53 polyadenylation signal confers cancer susceptibility.
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:11, s. 1098-103
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify new risk variants for cutaneous basal cell carcinoma, we performed a genome-wide association study of 16 million SNPs identified through whole-genome sequencing of 457 Icelanders. We imputed genotypes for 41,675 Illumina SNP chip-typed Icelanders and their relatives. In the discovery phase, the strongest signal came from rs78378222[C] (odds ratio (OR) = 2.36, P = 5.2 × 10(-17)), which has a frequency of 0.0192 in the Icelandic population. We then confirmed this association in non-Icelandic samples (OR = 1.75, P = 0.0060; overall OR = 2.16, P = 2.2 × 10(-20)). rs78378222 is in the 3' untranslated region of TP53 and changes the AATAAA polyadenylation signal to AATACA, resulting in impaired 3'-end processing of TP53 mRNA. Investigation of other tumor types identified associations of this SNP with prostate cancer (OR = 1.44, P = 2.4 × 10(-6)), glioma (OR = 2.35, P = 1.0 × 10(-5)) and colorectal adenoma (OR = 1.39, P = 1.6 × 10(-4)). However, we observed no effect for breast cancer, a common Li-Fraumeni syndrome tumor (OR = 1.06, P = 0.57, 95% confidence interval 0.88-1.27).
  •  
2.
  • Sigmundsson, F., et al. (författare)
  • Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption
  • 2010
  • Ingår i: Nature. ; 468:7322, s. 426-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced1–3. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajo¨kull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest4–9. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (.5mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a 0.05km3 magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma–ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajo¨kull’s behaviour can be attributed to its off-rift setting with a ‘cold’ subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.
  •  
3.
  •  
4.
  • Marteinsson, Viggo Thor, et al. (författare)
  • Microbial communities in the subglacial waters of the Vatnajokull ice cap, Iceland
  • 2013
  • Ingår i: The Isme Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 7:2, s. 427-437
  • Tidskriftsartikel (refereegranskat)abstract
    • Subglacial lakes beneath the Vatnajokull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3-v5 and v4-v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4-v6 libraries are 3-8 times higher than in corresponding v3-v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajokull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. The ISME Journal (2013) 7, 427-437; doi:10.1038/ismej.2012.97; published online 13 September 2012
  •  
5.
  • Rymer, H., et al. (författare)
  • New mass increase beneath Askja volcano, Iceland – a precursor to renewed activity?
  • 2010
  • Ingår i: Terra Nova. - 0954-4879. ; 22:4, s. 309-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Askja is an active central volcano located on the NS trending en echelon rift zone marking the mid-Atlantic plate boundary in North Iceland. Between 2007 and 2009, we observed a gravity increase at the centre of the caldera. This contrasts with net gravity decreases recorded between 1988 and 2007 interpreted previously in terms of magma drainage. The recent gravity increase is rapid, but similar in terms of lateral extent to the preceding decrease. This gravity increase corresponds to a sub-surface mass increase of 0.68 × 1011 kg at about 3 km depth. It is possible that the new gravity increases observed at Askja reflect accumulation of magma beneath the caldera and thus may herald a new phase in the activity of this volcano, which last erupted in 1961.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy