SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ejeskär Katarina 1969) srt2:(2015-2019)"

Sökning: WFRF:(Ejeskär Katarina 1969) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chaudhari, Aditi, et al. (författare)
  • p110alpha hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110alpha kinase activity : Kinase-independent signaling of p110 alpha mutants
  • 2015
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
2.
  • Chaudhari, Aditi, et al. (författare)
  • Hepatic deletion of p110α and p85α results in insulin resistance despite sustained IRS1-associated phosphatidylinositol kinase activity
  • 2017
  • Ingår i: F1000 Research. - : Faculty of 1000 Ltd.. - 2046-1402 .- 1759-796X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Class IA phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) is an integral mediator of insulin signaling. The p110 catalytic and p85 regulatory subunits of PI3K are the products of separate genes, and while they come together to make the active heterodimer, they have opposing roles in insulin signaling and action. Deletion of hepatic p110α results in an impaired insulin signal and severe insulin resistance, whereas deletion of hepatic p85α results in improved insulin sensitivity due to sustained levels of phosphatidylinositol (3,4,5)-trisphosphate. Here, we created mice with combined hepatic deletion of p110α and p85α (L-DKO) to study the impact on insulin signaling and whole body glucose homeostasis.Methods: Six-week old male flox control and L-DKO mice were studied over a period of 18 weeks, during which weight and glucose levels were monitored, and glucose tolerance tests, insulin tolerance test and pyruvate tolerance test were performed. Fasting insulin, insulin signaling mediators, PI3K activity and insulin receptor substrate (IRS)1-associated phosphatidylinositol kinase activity were examined at 10 weeks. Liver, muscle and white adipose tissue weight was recorded at 10 weeks and 25 weeks.Results: The L-DKO mice showed a blunted insulin signal downstream of PI3K, developed markedly impaired glucose tolerance, hyperinsulinemia and had decreased liver and adipose tissue weights. Surprisingly, however, these mice displayed normal hepatic glucose production, normal insulin tolerance, and intact IRS1-associated phosphatidylinositol kinase activity without compensatory upregulated signaling of other classes of PI3K.Conclusions: The data demonstrate an unexpectedly overall mild metabolic phenotype of the L-DKO mice, suggesting that lipid kinases other than PI3Ks might partially compensate for the loss of p110α/p85α by signaling through other nodes than Akt/Protein Kinase B.
  •  
3.
  • Chaudhari, Aditi, et al. (författare)
  • p110α hot spot mutations E545K and H1047R exert metabolic reprogramming independently of p110α kinase activity
  • 2015
  • Ingår i: Molecular and Cellular Biology. - : American Society for Microbiology. - 0270-7306 .- 1098-5549. ; 35:19, s. 3258-3273
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.
  •  
4.
  • Dahl-Halvarsson, Martin, et al. (författare)
  • Drosophila model of myosin myopathy rescued by overexpression of a TRIM-protein family member
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Myosin is a molecular motor indispensable for body movement and heart contractility. Apart from pure cardiomyopathy, mutations in MYH7 encoding slow/beta-cardiac myosin heavy chain also cause skeletal muscle disease with or without cardiac involvement. Mutations within the alpha-helical rod domain of MYH7 are mainly associated with Laing distal myopathy. To investigate the mechanisms underlying the pathology of the recurrent causative MYH7 mutation (K1729del), we have developed a Drosophila melanogaster model of Laing distal myopathy by genomic engineering of the Drosophila Mhc locus. Homozygous MhcK1728del animals die during larval/pupal stages, and both homozygous and heterozygous larvae display reduced muscle function. Flies expressing only MhcK1728del in indirect flight and jump muscles, and heterozygous MhcK1728del animals, were flightless, with reduced movement and decreased lifespan. Sarcomeres of MhcK1728del mutant indirect flight muscles and larval body wall muscles were disrupted with clearly disorganized muscle filaments. Homozygous MhcK1728del larvae also demonstrated structural and functional impairments in heart muscle, which were not observed in heterozygous animals, indicating a dose-dependent effect of the mutated allele. The impaired jump and flight ability and the myopathy of indirect flight and leg muscles associated with MhcK1728del were fully suppressed by expression of Abba/Thin, an E3-ligase that is essential for maintaining sarcomere integrity. This model of Laing distal myopathy in Drosophila recapitulates certain morphological phenotypic features seen in Laing distal myopathy patients with the recurrent K1729del mutation. Our observations that Abba/Thin modulates these phenotypes suggest that manipulation of Abba/Thin activity levels may be beneficial in Laing distal myopathy.
  •  
5.
  • Ejeskär, Katarina, 1969, et al. (författare)
  • The Unique Non-Catalytic C-Terminus of P37delta-PI3K Adds Proliferative Properties In Vitro and In Vivo
  • 2015
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37 delta, an alternatively spliced product of human PI3K p110 delta, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37 delta in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37 delta further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37 delta both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37 delta prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy