SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekström Andreas 1980) srt2:(2022)"

Sökning: WFRF:(Ekström Andreas 1980) > (2022)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Djärv, Tor, 1991, et al. (författare)
  • Bayesian predictions for A=6 nuclei using eigenvector continuation emulators
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 105:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We make ab initio predictions for the A=6 nuclear level scheme based on two- and three-nucleon interactions up to next-to-next-to-leading order in chiral effective field theory (χEFT). We utilize eigenvector continuation and Bayesian methods to quantify uncertainties stemming from the many-body method, the χEFT truncation, and the low-energy constants of the nuclear interaction. The construction and validation of emulators is made possible via the development of jupiterncsm - a new M-scheme no-core shell model code that uses on-the-fly Hamiltonian matrix construction for efficient, single-node computations up to Nmax=10 for Li6. We find a slight underbinding of He6 and Li6, although consistent with experimental data given our theoretical error bars. As a result of incorporating correlated χEFT-truncation errors we find more precise predictions (smaller error bars) for separation energies: Sd(Li6)=0.89±0.44MeV, S2n(He6)=0.20±0.60MeV, and for the beta decay Q value: Qβ-(He6)=3.71±0.65MeV. We conclude that our error bars can potentially be reduced further by extending the model space used by jupiterncsm.
  •  
2.
  • Hu, Baishan, et al. (författare)
  • Ab initio predictions link the neutron skin of Pb-208 to nuclear forces
  • 2022
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2481 .- 1745-2473. ; 18:10, s. 1196-1200
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness is sensitive to details of the nuclear force. This links atomic nuclei to properties of neutron stars, thereby relating objects that differ in size by orders of magnitude. The nucleus Pb-208 is of particular interest because it exhibits a simple structure and is experimentally accessible. However, computing such a heavy nucleus has been out of reach for ab initio theory. By combining advances in quantum many-body methods, statistical tools and emulator technology, we make quantitative predictions for the properties of Pb-208 starting from nuclear forces that are consistent with symmetries of low-energy quantum chromodynamics. We explore 10(9) different nuclear force parameterizations via history matching, confront them with data in select light nuclei and arrive at an importance-weighted ensemble of interactions. We accurately reproduce bulk properties of Pb-208 and determine the neutron skin thickness, which is smaller and more precise than a recent extraction from parity-violating electron scattering but in agreement with other experimental probes. This work demonstrates how realistic two- and three-nucleon forces act in a heavy nucleus and allows us to make quantitative predictions across the nuclear landscape. Predictions of the properties of Pb-208 from first principles augmented by statistical learning techniques reproduce those seen in experiments but rule out very thick neutron skins.
  •  
3.
  • Miller, Sean, 1993, et al. (författare)
  • Neutron-deuteron scattering cross sections with chiral NN interactions using wave-packet continuum discretization
  • 2022
  • Ingår i: Physical Review C. - 2469-9993 .- 2469-9985. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we present a framework that allows one to solve the Faddeev equations for three-nucleon scattering using the wave-packet continuum-discretization method. We perform systematic benchmarks using results in the literature and study in detail the convergence of this method with respect to the number of wave packets. We compute several different elastic neutron-deuteron scattering cross-section observables for a variety of energies using chiral nucleon-nucleon interactions. For the optimized next-to-next-to-leading order interaction N2LOopt we find good agreement with data for nucleon scattering-energies ELab≤70 MeV and a slightly larger maximum of the neutron analyzing power Ay(n) at ELab=10 and 21 MeV compared with other interactions. This work represents a first step towards a systematic inclusion of three-nucleon scattering observables in the construction of next-generation nuclear interactions.
  •  
4.
  • Miller, Sean, 1993, et al. (författare)
  • Wave-packet continuum discretisation for nucleon-nucleon scattering predictions
  • 2022
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 49:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we analyse the efficiency, precision, and accuracy of computing elastic nucleon-nucleon (NN) scattering amplitudes with the wave-packet continuum discretisation method (WPCD). This method provides approximate scattering solutions at multiple scattering energies simultaneously. We therefore utilise a graphics processing unit to explore the benefits of this inherent parallelism. From a theoretical perspective, the WPCD method promises a speedup compared to a standard matrix-inversion method. We use the chiral NNLOopt interaction to demonstrate that WPCD enables efficient computation of NN scattering amplitudes provided one can tolerate an averaged method error of 1-5 mb in the total cross section at scattering energies 0-350 MeV in the laboratory frame of reference. Considering only scattering energies similar to 40-350 MeV, we find a smaller method error of less than or similar to 1-2 mb. By increasing the number of wave-packets we can further reduce the overall method error. However, the parallel leverage of the WPCD method will be offset by the increased size of the resulting discretisation mesh. In practice, a GPU-implementation is mainly advantageous for matrices that fit in the fast on-chip shared memory. We find that WPCD is a promising method for computationally efficient, statistical analyses of nuclear interactions from effective field theory, where we can utilise Bayesian inference methods to incorporate relevant uncertainties.
  •  
5.
  • Mishra, Chinmay, et al. (författare)
  • Two-pion exchange as a leading-order contribution in chiral effective field theory
  • 2022
  • Ingår i: Physical Review C. - 2469-9993 .- 2469-9985. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Pion exchange is the central ingredient to nucleon-nucleon interactions used in nuclear structure calculations, and one-pion exchange (OPE) enters at leading order in chiral effective field theory. In the 2S+1LJ=1S0 partial wave, however, OPE and a contact term needed for proper renormalization fail to produce the qualitative, and quantitative, features of the scattering phase shifts. Cutoff variation also revealed a surprisingly low breakdown momentum Λb≈330 MeV in this partial wave. Here we show that potentials consisting of OPE, two-pion exchange (TPE), and a single contact address these problems and yield accurate and renormalization group (RG) invariant phase shifts in the S01 partial wave. We demonstrate that a leading-order potential with TPE can be systematically improved by adding a contact quadratic in momenta. For momentum cutoffs Λ 500 MeV, the removal of relevant physics from TPE loops needs to be compensated by additional contacts to keep RG invariance. Inclusion of the Δ isobar degree of freedom in the potential does not change the strong contributions of TPE.
  •  
6.
  •  
7.
  • Svensson, Isak, 1988, et al. (författare)
  • Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 105:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of low-energy constants (LECs) in chiral effective field theory (chi EFT) grows rapidly with increasing chiral order, necessitating the use of Markov chain Monte Carlo techniques for sampling their posterior probability density function. For this we introduce a Hamiltonian Monte Carlo (HMC) algorithm and sample the LEC posterior up to next-to-next-to-leading order (NNLO) in the two-nucleon sector of chi EFT. We find that the sampling efficiency of HMC is three to six times higher compared to an affine-invariant sampling algorithm. We analyze the empirical coverage probability and validate that the NNLO model yields predictions for two-nucleon scattering data with largely reliable credible intervals, provided that one ignores the leading-order EFT expansion parameter when inferring the variance of the truncation error. We also find that the NNLO truncation error dominates the error budget.
  •  
8.
  • Tews, Ingo, et al. (författare)
  • Nuclear Forces for Precision Nuclear Physics: A Collection of Perspectives
  • 2022
  • Ingår i: Few-Body Systems. - : Springer Science and Business Media LLC. - 1432-5411 .- 0177-7963. ; 63:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a collection of perspective pieces contributed by the participants of the Institute for Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy