SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekwall Anna Karin H) srt2:(2015-2019)"

Sökning: WFRF:(Ekwall Anna Karin H) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Beatrice, et al. (författare)
  • The Rheumatoid Arthritis Risk Gene AIRE Is Induced by Cytokines in Fibroblast-Like Synoviocytes and Augments the Pro-inflammatory Response
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The autoimmune regulator AIRE controls the negative selection of self-reactive T-cells as well as the induction of regulatory T-cells in the thymus by mastering the transcription and presentation of tissue restricted antigens (TRAs) in thymic cells. However, extrathymic AIRE expression of hitherto unknown clinical significance has also been reported. Genetic polymorphisms of AIRE have been associated with rheumatoid arthritis (RA), but no specific disease-mediating mechanism has been identified. Rheumatoid arthritis is characterized by a systemic immune activation and arthritis. Activated fibroblast-like synoviocytes (FLS) are key effector cells, mediating persistent inflammation, and destruction of joints. In this study, we identified AIRE as a cytokine-induced RA risk gene in RA FLS and explored its role in these pathogenic stroma cells. Using RNA interference and RNA sequencing we show that AIRE does not induce TRAs in FLS, but augments the pro-inflammatory response induced by tumor necrosis factor and interleukin-1 beta by promoting the transcription of a set of genes associated with systemic autoimmune disease and annotated as interferon-gamma regulated genes. In particular, AIRE promoted the production and secretion of a set of chemokines, amongst them CXCL10, which have been associated with disease activity in RA. Finally, we demonstrate that AIRE is expressed in podoplanin positive FLS in the lining layer of synovial tissue from RA patients. These findings support a novel pro-inflammatory role of AIRE at peripheral inflammatory sites and provide a potential pathological mechanism for its association with RA.
  •  
2.
  • Bergström, Beatrice, et al. (författare)
  • Methotrexate inhibits effects of platelet-derived growth factor and interleukin-1β on rheumatoid arthritis fibroblast-like synoviocytes
  • 2018
  • Ingår i: Arthritis Research and Therapy. - : Springer Science and Business Media LLC. - 1478-6354 .- 1478-6362. ; 20:49
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A key feature of joints in rheumatoid arthritis (RA) is the formation of hyperplastic destructive pannus tissue, which is orchestrated by activated fibroblast-like synoviocytes (FLS). We have demonstrated that the RA risk gene and tumor suppressor Limb bud and heart development (LBH) regulates cell cycle progression in FLS. Methotrexate (MTX) is the first-line treatment for RA, but its mechanisms of action remain incompletely understood. Here, we studied the effects of MTX on mitogen-induced FLS proliferation and expression of cell cycle regulators in vitro. Methods: Primary FLS from patients with RA or osteoarthritis were stimulated with the mitogen platelet-derived growth factor (PDGF) and the cytokine interleukin-1β (IL-1β) in the presence or absence of MTX. Cells were then subjected to qPCR for gene expression and cell cycle analysis by flow cytometry. Results: Stimulation with PDGF and IL-1β increased the percentage of FLS in the G2/M phase and shifted the cell morphology to a dendritic shape. These effects were inhibited by MTX. Furthermore, PDGF + IL-1β reduced LBH mRNA expression. However, MTX treatment yielded significantly higher transcript levels of LBH, and of CDKN1A (p21) and TP53 (p53), compared to untreated samples upon mitogen stimulation. The expression of DNA methyltransferase-1 (DNMT1) was also higher in the presence of MTX and there was strong correlation between DNMT1 and LBH expression. Conclusions: Therapeutic concentrations of MTX abolish the effects of PDGF and IL-1β on tumor suppressor expression and inhibit mitogen-promoted FLS proliferation. These data demonstrate novel and important effects of MTX on pathogenic effector cells in the joint, which might involve epigenetic mechanisms. © 2018 The Author(s).
  •  
3.
  • Hammaker, D., et al. (författare)
  • LBH Gene Transcription Regulation by the Interplay of an Enhancer Risk Allele and DNA Methylation in Rheumatoid Arthritis
  • 2016
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191. ; 68:11, s. 2637-2645
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo identify nonobvious therapeutic targets for rheumatoid arthritis (RA), we performed an integrative analysis incorporating multiple omics data and the Encyclopedia of DNA Elements (ENCODE) database for potential regulatory regions. This analysis identified the limb bud and heart development (LBH) gene, which has risk alleles associated with RA/celiac disease and lupus, and can regulate cell proliferation in RA. We identified a novel LBH transcription enhancer with an RA risk allele (rs906868 G [Ref]/T) 6 kb upstream of the LBH gene with a differentially methylated locus. The confluence of 3 regulatory elements, rs906868, an RA differentially methylated locus, and a putative enhancer, led us to investigate their effects on LBH regulation in fibroblast-like synoviocytes (FLS). MethodsWe cloned the 1.4-kb putative enhancer with either the rs906868 Ref allele or single-nucleotide polymorphism (SNP) variant into reporter constructs. The constructs were methylated in vitro and transfected into cultured FLS by nucleofection. ResultsWe found that both variants increased transcription, thereby confirming the region's enhancer function. Unexpectedly, the transcriptional activity of the Ref risk allele was significantly lower than that of the SNP variant and is consistent with low LBH levels as a risk factor for aggressive FLS behavior. Using RA FLS lines with a homozygous Ref or SNP allele, we confirmed that homozygous Ref lines expressed lower LBH messenger RNA levels than did the SNP lines. Methylation significantly reduced enhancer activity for both alleles, indicating that enhancer function is dependent on its methylation status. ConclusionThis study shows how the interplay between genetics and epigenetics can affect expression of LBH in RA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy