SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elías Wolff Federico) srt2:(2018)"

Sökning: WFRF:(Elías Wolff Federico) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elías-Wolff, Federico, 1983- (författare)
  • A computational approach to curvature sensing in lipid bilayers
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Local curvature is a key driving force for spatial organization of cellular membranes, via a phenomenon known as membrane curvature sensing, where the binding energy of membrane associated macromolecules depends on the local membrane shape. However, the microscopic mechanisms of curvature sensing are not well understood. Molecular dynamics simulations offer a powerful complement to biochemical experiments, yet their contribution to the study of curvature sensing has been limited, due in part to the lack of efficient methods, not least because of methodological difficulties in dealing with curved membranes. We develop a method based on simulated buckling, which has been previously employed to study mechanical properties of membranes. Here, we describe, validate and evaluate this method. We then apply to study curvature sensing properties of three model systems, using coarse-grained simulations. On the first system, we study lipid sorting in a three-component lipid mixture with emphasis on cardiolipin. We find that if curvature is high, curvature sensing is strong enough to drive cardiolipin molecules to negative curvature regions, outcompeting other lipids, without the need of external interactions or cooperative effects. We then simulated three systems consisting of a short amphipathic peptide attached to the surface of a buckled membrane. All three peptides localize to positive curvature, in agreement with the so-called cylindrical hydrophobic insertion mechanism. Their orientational preferences, however, defy the prediction of alignment perpendicular to the direction of maximum curvature. They also fail to show expected symmetries, indicating there is more to the picture than purely shape-based effects. The curvature sensing probe of the next system is a transmembrane trimeric protein, which shows preference to intermediate curvature, in agreement with theoretical predictions. But the lack of an expected 2-fold rotation symmetry indicates that the trimer senses the local curvature gradient, and not just the point-wise local curvature. Finally, dispensing with the buckling methodology, we simulated a series of symmetric transmembrane multimers embedded in cylindrical bilayers. Based on the results of these simulations and theoretical arguments, we discuss the relationship between structural symmetry and curvature sensitivity. We conclude that anisotropic (i.e. orientation-dependent) curvature sensing is strongly limited by odd and high order rotational symmetries. However, measurements of in-plane orientation on peptides and asymmetric proteins, as well as dimers and tetramers, should yield valuable information. Our method, along with our initial conclusions, provides an useful tool for the understanding of the relationship between membrane shape and membrane protein function, and should prove useful to biophysicists in the design and interpretation of experimental curvature sensing assays.
  •  
2.
  • Elías-Wolff, Federico, et al. (författare)
  • Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling
  • 2018
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 14:3, s. 1643-1655
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy