SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elamin Khalid 1977) srt2:(2014)"

Sökning: WFRF:(Elamin Khalid 1977) > (2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elamin, Khalid, 1977, et al. (författare)
  • Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay
  • 2014
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 141:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative alpha-relaxation becomes considerably more suppressed than the more local beta-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural alpha-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related alpha-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature T-g are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjostrom, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the beta-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the beta-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below T-g. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the alpha-relaxation above T-g, but instead crosses the alpha-relaxation, indicating that the two relaxation processes are independent of each other. This can only occur if the two processes do not occur in the same parts of the confined solutions. Most likely the hydration shell of the interlayer Na+ ions is causing this water relaxation, which does not participate in the alpha-relaxation at any temperature.
  •  
2.
  • Swenson, Jan, 1966, et al. (författare)
  • Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering
  • 2014
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 1089-7690 .- 0021-9606. ; 141:21
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H2O (or D2O) confined in 28 angstrom pores of MCM 41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0-90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 angstrom. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy