SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elder G) srt2:(2020-2024)"

Sökning: WFRF:(Elder G) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  •  
3.
  • Dickstein, D. L., et al. (författare)
  • Brain and blood biomarkers of tauopathy and neuronal injury in humans and rats with neurobehavioral syndromes following blast exposure
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5940-5954
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is a risk factor for the later development of neurodegenerative diseases that may have various underlying pathologies. Chronic traumatic encephalopathy (CTE) in particular is associated with repetitive mild TBI (mTBI) and is characterized pathologically by aggregation of hyperphosphorylated tau into neurofibrillary tangles (NFTs). CTE may be suspected when behavior, cognition, and/or memory deteriorate following repetitive mTBI. Exposure to blast overpressure from improvised explosive devices (IEDs) has been implicated as a potential antecedent for CTE amongst Iraq and Afghanistan Warfighters. In this study, we identified biomarker signatures in rats exposed to repetitive low-level blast that develop chronic anxiety-related traits and in human veterans exposed to IED blasts in theater with behavioral, cognitive, and/or memory complaints. Rats exposed to repetitive low-level blasts accumulated abnormal hyperphosphorylated tau in neuronal perikarya and perivascular astroglial processes. Using positron emission tomography (PET) and the [F-18]AV1451 (flortaucipir) tau ligand, we found that five of 10 veterans exhibited excessive retention of [F-18]AV1451 at the white/gray matter junction in frontal, parietal, and temporal brain regions, a typical localization of CTE tauopathy. We also observed elevated levels of neurofilament light (NfL) chain protein in the plasma of veterans displaying excess [F-18]AV1451 retention. These findings suggest an association linking blast injury, tauopathy, and neuronal injury. Further study is required to determine whether clinical, neuroimaging, and/or fluid biomarker signatures can improve the diagnosis of long-term neuropsychiatric sequelae of mTBI.
  •  
4.
  •  
5.
  • Benton, S., et al. (författare)
  • Impact of Next-generation Sequencing on Interobserver Agreement and Diagnosis of Spitzoid Neoplasms
  • 2021
  • Ingår i: American Journal of Surgical Pathology. - : Ovid Technologies (Wolters Kluwer Health). - 0147-5185 .- 1532-0979. ; 45:12, s. 1597-1605
  • Tidskriftsartikel (refereegranskat)abstract
    • Atypical Spitzoid melanocytic tumors are diagnostically challenging. Many studies have suggested various genomic markers to improve classification and prognostication. We aimed to assess whether next-generation sequencing studies using the Tempus xO assay assessing mutations in 1711 cancer-related genes and performing whole transcriptome mRNA sequencing for structural alterations could improve diagnostic agreement and accuracy in assessing neoplasms with Spitzoid histologic features. Twenty expert pathologists were asked to review 70 consultation level cases with Spitzoid features, once with limited clinical information and again with additional genomic information. There was an improvement in overall agreement with additional genomic information. Most significantly, there was increase in agreement of the diagnosis of conventional melanoma from moderate (kappa=0.470, SE=0.0105) to substantial (kappa=0.645, SE=0.0143) as measured by an average Cohen kappa. Clinical follow-up was available in all 70 cases which substantiated that the improved agreement was clinically significant. Among 3 patients with distant metastatic disease, there was a highly significant increase in diagnostic recognition of the cases as conventional melanoma with genomics (P<0.005). In one case, none of 20 pathologists recognized a tumor with BRAF and TERT promoter mutations associated with fatal outcome as a conventional melanoma when only limited clinical information was provided, whereas 60% of pathologists correctly diagnosed this case when genomic information was also available. There was also a significant improvement in agreement of which lesions should be classified in the Spitz category/WHO Pathway from an average Cohen kappa of 0.360 (SE=0.00921) to 0.607 (SE=0.0232) with genomics.
  •  
6.
  • Calistri, A, et al. (författare)
  • The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Llewellyn, R. D. O., et al. (författare)
  • Establishing the Maximum Collectivity in Highly Deformed N = Z Nuclei
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 124:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetimes of the first excited 2(+) states in the N = Z nuclei Zr-80, Y-78, and Sr-76 have been measured using the gamma-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy