SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elger Christian) srt2:(2020-2022)"

Sökning: WFRF:(Elger Christian) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Robinson, Adam H., et al. (författare)
  • Multiscale characterisation of chimneys/pipes : Fluid escape structures within sedimentary basins
  • 2021
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836 .- 1878-0148. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. The properties of fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner pockmark complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi-disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multi-frequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across a wide range of length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
  •  
2.
  • Elger, Judith, et al. (författare)
  • Core‐log‐seismic integration in metamorphic rocks and its implication for the regional geology : A case study for the ICDP drilling project COSC‐1, Sweden
  • 2021
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 22:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Continental collision causes deformation in the crust along shear zones. However, the physical and chemical conditions at which these zones operate and the deformation processes that enable up to hundreds of km of tectonic transport are still unclear because of the depth at which they occur and the challenges in imaging them. Ancient exhumed collision zones allow us to investigate these processes much better, for example at the COSC‐1 borehole in the central Scandinavian Caledonides. This study combines data from the COSC‐1 borehole with different seismic measurements to provide constraints on the spatial lithological and textural configuration of the Seve Nappe Complex. This is one of the few studies that shows that core‐log‐seismic integration in metamorphic rocks allows to identify the spatial distribution of major lithological units. Especially gamma ray logs in combination with density data are powerful tools to distinguish between mafic and felsic lithologies in log‐core correlation. Our results indicate that reflections along the borehole are primarily caused by compositional rather than textural changes. Reflections in the Seve Nappe Complex are not as distinct as in greater depths but continuous and several of them can be linked to magmatic intrusions, which have been metamorphically overprinted. Their setting indicates that the Seve Nappe Complex consists of the remnants of a volcanic continental margin. Our results suggest that ductile‐deformed middle crustal reflectivity is primarily a function of pre‐orogenic lithological variations which has to be considered when deciphering mountain building processes.Plain Language SummaryAreas where continents collide experience different kind of deformation. However, these processes and the conditions at which they take place are difficult to study because of the great depth at which they occur. Former collision zones that are closer to the surface these days allow the investigation of these processes much better, for example at the COSC‐1 borehole in the central Scandinavian Caledonides. The challenge remains to image the remnant of these processes in high detail but at the same time over a large area. This study combines data from the COSC‐1 borehole with different geophysical measurements to better understand the lithology and structure of the Seve Nappe Complex. We show that the combination of these data allows us to distinguish between rocks from mafic and sedimentary origin. Our results indicate that the geophysical data along the borehole image the change of the composition of the rocks which probably originates from magmatic intrusions and have been overprinted by geological processes, rather than from fracture zones.
  •  
3.
  • Karstens, Jens, et al. (författare)
  • Formation of the Figge Maar Seafloor Crater During the 1964 B1 Blowout in the German North Sea
  • 2022
  • Ingår i: Earth Science, Systems and Society. - : Frontiers Media SA. - 2634-730X. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • In 1964, exploration drilling in the German Sector of the North Sea hit a gas pocket at ∼2900 m depth below the seafloor and triggered a blowout, which formed a 550 m-wide and up to 38 m deep seafloor crater now known as Figge Maar. Although seafloor craters formed by fluid flow are very common structures, little is known about their formation dynamics. Here, we present 2D reflection seismic, sediment echosounder, and multibeam echosounder data from three geoscientific surveys of the Figge Maar blowout crater, which are used to reconstruct its formation. Reflection seismic data support a scenario in which overpressured gas ascended first through the lower part of the borehole and then migrated along steeply inclined strata and faults towards the seafloor. The focused discharge of gas at the seafloor removed up to 4.8 Mt of sediments in the following weeks of vigorous venting. Eyewitness accounts document that the initial phase of crater formation was characterized by the eruptive expulsion of fluids and sediments cutting deep into the substrate. This was followed by a prolonged phase of sediment fluidization and redistribution widening the crater. After fluid discharge ceased, the Figge Maar acted as a sediment trap reducing the crater depth to ∼12 m relative to the surrounding seafloor in 2018, which corresponds to an average sedimentation rate of ∼22,000 m3/yr between 1995 and 2018. Hydroacoustic and geochemical data indicate that the Figge Maar nowadays emits primarily biogenic methane, predominantly during low tide. The formation of Figge Maar illustrates hazards related to the formation of secondary fluid pathways, which can bypass safety measures at the wellhead and are thus difficult to control. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy