SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elghazali G) srt2:(1997-1999)"

Sökning: WFRF:(Elghazali G) > (1997-1999)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Perlmann, P, et al. (författare)
  • Immunoglobulin E, a pathogenic factor in Plasmodium falciparum malaria
  • 1997
  • Ingår i: Infection and immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 65:1, s. 116-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Most children and adults living in areas where the endemicity of Plasmodium falciparum malaria is high have significantly elevated levels of both total immunoglobulin E (IgE) and IgE antimalarial antibodies in blood. This elevation is highest in patients with cerebral malaria, suggesting a pathogenic role for this immunoglobulin isotype. In this study, we show that IgE elevation may also be seen in severe malaria without cerebral involvement and parallels an elevation of tumor necrosis factor alpha (TNF). IgE-containing serum from malaria immune donors was added to tissue culture plates coated with rabbit anti-human IgE antibodies or with P. falciparum antigen. IgE-anti-IgE complexes as well as antigen-binding IgE antibodies induced TNF release from peripheral blood mononuclear cells (PBMC). Nonmalaria control sera with no IgE elevation induced significantly less of this cytokine, and the TNF-inducing capacity of malaria sera was also strongly reduced by passing them over anti-IgE Sepharose columns. The cells giving rise to TNF were adherent PBMC. The release of this cytokine probably reflects cross-linking of their low-affinity receptors for IgE (CD23) by IgE-containing immune complexes known to give rise to monocyte activation via the NO transduction pathway. In line with this, adherent monocytic cells exposed to IgE complexes displayed increased expression of CD23. As the malaria sera contained IgG anti-IgE antibodies, such complexes probably also play a role in the induction of TNF in vivo. Overproduction of TNF is considered a major pathogenic mechanism responsible for fever and tissue lesions in P. falciparum malaria. This overproduction is generally assumed to reflect a direct stimulation of effector cells by certain parasite-derived toxins. Our results suggest that IgE elevation constitutes yet another important mechanism involved in excessive TNF induction in this disease.
  •  
3.
  • Troye-Blomberg, Marita, et al. (författare)
  • Human gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the Plasmodium falciparum parasite express cytolytic and proinflammatory molecules.
  • 1999
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 0300-9475 .- 1365-3083. ; 50:6, s. 642-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional properties, regarding parasite growth inhibition in vitro, the cytotoxic potential and cytokine profiles of human gammadelta+ and alphabeta+ T cells, T-cell lines and clones stimulated with Plasmodium falciparum-antigen-or T-cell mitogen in vitro were investigated. Using reverse transcriptase-polymerase chain reaction (RT-PCR) and specific primers, mRNA for the cytolytic molecules perforin, granzyme A and B, Fas and Fas ligand (FasL) were detected in both the gammadelta- and the alphabetaT cells. Despite this fact, only gammadeltaT cells inhibited, both Vdelta1+ and Vdelta2+, the in vitro growth of the asexual blood stages in a dose dependent manner. The inhibition required cell-to-cell contact and was not observed until the second parasite replication implied that the likely gammadeltaT-cell target was the extracellular merozoite or schizont. The failure of alphabetaT cells to inhibit the growth of the parasite suggests requirement of additional cytolytic molecules/signals or different receptor specificities exhibited by the gammadeltaT cells. Both the gammadelta- and alphabetaT cells expressed mRNA for a large number of cytokines. Interferon (IFN)-gamma, interleukin (IL) IL-5, IL-6, IL-8, tumour necrosis factor alpha (TNFalpha), tumour necrosis factor beta (TNF-beta)/lymphotoxin (LT) and T-cell growth factor beta-1 (TGF-beta1) were observed in all activated clones tested. No IL-3 was detected, while IL-1beta, IL-2, IL-4, IL-10 and GM-CSF were variably expressed. In conclusion, our data show that gammadeltaT cells in malaria nonimmune individuals inhibit the asexual blood stages of P. falciparum malaria, while similarly activated alphabetaT cells do not. Thus, it is likely that the gammadeltaT cells could play a mandatory role in the elimination of parasites and/or the regulation of the early immune response to malaria infection.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy