SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Elmquist Marie) srt2:(2010-2014)"

Sökning: WFRF:(Elmquist Marie) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cornelissen, Gerard, et al. (författare)
  • Remediation of Contaminated Marine Sediment Using Thin-Layer Capping with Activated Carbon-A Field Experiment in Trondheim Harbor, Norway
  • 2011
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 45:14, s. 6110-6116
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ amendment of contaminated sediments using activated carbon (AC) is a recent remediation technique, where the strong sorption of contaminants to added AC reduces their release from sediments and uptake into organisms. The current study describes a marine underwater field pilot study in Trondheim harbor, Norway, in which powdered AC alone or in combination with sand or clay was tested as a thin-layer capping material for polycyclic aromatic hydrocarbon (PAH)-contaminated sediment. Several novel elements were included, such as measuring PAH fluxes, no active mixing of AC into the sediment, and the testing of new manners of placing a thin AC cap on sediment, such as AC+clay and AC+sand combinations. Innovative chemical and biological monitoring methods were deployed to test capping effectiveness. In situ sediment-to-water PAH fluxes were measured using recently developed benthic flux chambers. Compared to the reference field, AC capping reduced fluxes by a factor of 2-10. Pore water PAH concentration profiles were measured in situ using anew passive sampler technique, and yielded a reduction factor of 2-3 compared to the reference field. The benthic macrofauna composition and biodiversity were affected by the AC amendments, AC + clay having a lower impact on the benthic taxa than AC-only or AC + sand. In addition, AC + clay gave the highest AC recoveries (60% vs 30% for AC-only and AC + sand) and strongest reductions in sediment-to-water PAH fluxes and porewater concentrations. Thus, application of an AC-clay mixture is recommended as the optimal choice of the currently tested thin-layer capping methods for PAHs, and more research on optimizing its implementation is needed.
  •  
2.
  • Jakob, Lena, et al. (författare)
  • PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants
  • 2012
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 88:6, s. 699-705
  • Tidskriftsartikel (refereegranskat)abstract
    • A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 +/- 44% and the PAC amendment reduced them by 72 +/- 19%. For the investigated plants the BSAFs were reduced by 46 +/- 36% and 53 +/- 22% by the GAC and PAC, respectively.
  •  
3.
  • Oen, Amy M. P., et al. (författare)
  • Sorption of Organic Compounds to Fresh and Field-Aged Activated Carbons in Soils and Sediments
  • 2012
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 46:2, s. 810-817
  • Tidskriftsartikel (refereegranskat)abstract
    • Activated carbon (AC) amendment to polluted sediment or soil is an emerging in situ treatment technique that reduces freely dissolved porewater concentrations and subsequently reduces the ecological and human health risk of hydrophobic organic compounds (HOCs). An important question is the capacity of the amended AC after prolonged exposure in the field. To address this issue, sorption of freshly spiked and native HOCs to AC aged under natural field conditions and fresh AC amendments was compared for one soil and two sediments. After 12-32 months of field aging, all AC amendments demonstrated effectiveness for reducing pore water concentrations of both native (30-95%) and spiked (10-90%) HOCs compared to unamended sediment or soil. Values of K-AC for field-aged AC were lower than freshly added AC for spiked HOCs up to a factor of 10, while the effect was less for native HOCs. The different behavior in sorbing native HOCs compared to freshly spiked HOCs was attributed to differences in the sorption kinetics and degree of competition for sorption sites between the contaminants and pore-clogging natural organic matter. The implications of these findings are that amended AC can still be effective in sorbing additional HOCs some years following amendment in the field. Thus, a certain level of long-term sustainability of this remediation approach is observed, but conclusions for decade-long periods cannot be drawn solely based on the present study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy