SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emanuelsson Katarina) srt2:(2006-2009)"

Sökning: WFRF:(Emanuelsson Katarina) > (2006-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adewumi, Oluseun, et al. (författare)
  • Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  • 2007
  • Ingår i: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 25:7, s. 803-816
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
  •  
2.
  • Bigdeli, Narmin, 1974, et al. (författare)
  • Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces.
  • 2008
  • Ingår i: Journal of biotechnology. - : Elsevier BV. - 0168-1656. ; 133:1, s. 146-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigeltrade mark in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.
  •  
3.
  • Heins, Nico, et al. (författare)
  • Clonal derivation and characterization of human embryonic stem cell lines.
  • 2006
  • Ingår i: Journal of biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 122:4, s. 511-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESC) are isolated as clusters of cells from the inner cell mass of blastocysts and thus should formally be considered as heterogeneous cell populations. Homogenous hESC cultures can be obtained through subcloning. Here, we report the clonal derivation and characterization of two new hESC lines from the parental cell line SA002 and the previously clonally derived cell line AS034.1, respectively. The hESC line SA002 was recently reported to have an abnormal karyotype (trisomy 13), but within this population of cells we observed rare individual cells with an apparent normal karyotype. At a cloning efficiency of 5%, we established 33 subclones from SA002, out of which one had a diploid karyotype and this subline was designated SA002.5. From AS034.1 we established one reclone designated AS034.1.1 at a cloning efficiency of 0.1%. These two novel sublines express cell surface markers indicative of undifferentiated hESC (SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), Oct-4, alkaline phosphatase, and they display high telomerase activity. In addition, the cells are pluripotent and form derivatives of all three embryonic germ layers in vitro as well as in vivo. These results, together with the clonal character of SA002.5 and AS034.1.1 make these homogenous cell populations very useful for hESC based applications in drug development and toxicity testing. In addition, the combination of the parental trisomic hESC line SA002 and the diploid subclone SA002.5 provides a unique experimental system to study the molecular mechanisms underlying the pathologies associated with trisomy 13.
  •  
4.
  • Karlsson, Camilla, 1977, et al. (författare)
  • Human embryonic stem cell-derived mesenchymal progenitors-Potential in regenerative medicine.
  • 2009
  • Ingår i: Stem cell research. - : Elsevier BV. - 1876-7753 .- 1873-5061. ; 3:1, s. 39-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue engineering and cell therapy require large-scale production of homogeneous populations of lineage-restricted progenitor cells that easily can be induced to differentiate into a specific tissue. We have developed straightforward protocols for the establishment of human embryonic stem (hES) cell-derived mesenchymal progenitor (hES-MP) cell lines. The reproducibility was proven by derivation of multiple hES-MP cell lines from 10 different hES cell lines. To illustrate clinical applicability, a xeno-free hES-MP cell line was also derived. None of the markers characteristic for undifferentiated hES cells were detected in the hES-MP cells. Instead, these cells were highly similar to mesenchymal stem cells with regard to morphology and expression of markers. The safety of hES-MP cells following transplantation was studied in severely combined immunodeficient (SCID) mice. The implanted hES-MP cells gave rise to homogeneous, well-differentiated tissues exclusively of mesenchymal origin and no teratoma formation was observed. These cells further have the potential to differentiate toward the osteogenic, adipogenic, and chondrogenic lineages in vitro. The possibility of easily and reproducibly generating highly expandable hES-MP cell lines from well-characterized hES cell lines with differentiation potential into several mesodermal tissues entails an enormous potential for the field of regenerative medicine.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy