SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enerbäck Sven 1958) srt2:(2000-2004)"

Sökning: WFRF:(Enerbäck Sven 1958) > (2000-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Di Gregorio, Gina B, et al. (författare)
  • Expression of FOXC2 in adipose and muscle and its association with whole body insulin sensitivity.
  • 2004
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 287:4
  • Tidskriftsartikel (refereegranskat)abstract
    • FOXC2 is a winged helix/forkhead transcription factor involved in PKA signaling. Overexpression of FOXC2 in the adipose tissue of transgenic mice protected against diet-induced obesity and insulin resistance. We examined the expression of FOXC2 in fat and muscle of nondiabetic humans with varying obesity and insulin sensitivity. There was no relation between body mass index (BMI) and FOXC2 mRNA in either adipose or muscle. There was a strong inverse relation between adipose FOXC2 mRNA and insulin sensitivity, using the frequently sampled intravenous glucose tolerance test (r = -0.78, P < 0.001). However, there was no relationship between muscle FOXC2 and any measure of insulin sensitivity. To separate insulin resistance from obesity, we examined FOXC2 expression in pairs of subjects who were matched for BMI but who were discordant for insulin sensitivity. Compared with insulin-sensitive subjects, insulin-resistant subjects had threefold higher levels of adipose FOXC2 mRNA (P = 0.03). In contrast, muscle FOXC2 mRNA expression was no different between insulin-resistant and insulin-sensitive subjects. There was no association of adipose or muscle FOXC2 mRNA with either circulating or adipose-secreted TNF-alpha, IL-6, leptin, adiponectin, or non-esterified fatty acids. Thus adipose FOXC2 is more highly expressed in insulin-resistant subjects, and this effect is independent of obesity. This association between FOXC2 and insulin resistance may be related to the role of FOXC2 in PKA signaling.
  •  
2.
  • Hansen, Jacob B, et al. (författare)
  • Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation.
  • 2004
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 101:12, s. 4112-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate into adipocytes with a gene expression pattern and mitochondria content resembling brown adipose tissue. pRB-deficient MEFs exhibit an increased expression of the Forkhead transcription factor Foxc2 and its target gene cAMP-dependent protein kinase regulatory subunit RIalpha, resulting in increased cAMP sensitivity. Suppression of cAMP-dependent protein kinase activity in Rb(-/-)MEFs blocked the brown adipocyte-like gene expression pattern without affecting differentiation per se. Immunohistochemical studies revealed that pRB is present in the nuclei of white but not brown adipocyte precursor cells at a developmental stage where both cell types begin to accumulate lipid and brown adipocytes express UCP-1. Furthermore, pRB rapidly undergoes phosphorylation upon cold-induced neodifferentiation and up-regulation of UCP-1 expression in brown adipose tissue. Finally, down-regulation of pRB expression accompanies transdifferentiation of white into brown adipocytes in response to beta3-adrenergic receptor agonist treatment. We propose that pRB acts as a molecular switch determining white vs. brown adipogenesis, suggesting a previously uncharacterized function of this key cell cycle regulator in adipocyte lineage commitment and differentiation.
  •  
3.
  •  
4.
  • Härndahl, Linda, et al. (författare)
  • Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology.
  • 2004
  • Ingår i: The Journal of biological chemistry. - 0021-9258 .- 1083-351X. ; 279:15, s. 15214-22
  • Tidskriftsartikel (refereegranskat)abstract
    • The second messenger cAMP mediates potentiation of glucose-stimulated insulin release. Use of inhibitors of cAMP-hydrolyzing phosphodiesterase (PDE) 3 and overexpression of PDE3B in vitro have demonstrated a regulatory role for this enzyme in insulin secretion. In this work, the physiological significance of PDE3B-mediated degradation of cAMP for the regulation of insulin secretion in vivo and glucose homeostasis was investigated in transgenic mice overexpressing PDE3B in pancreatic beta-cells. A 2-fold overexpression of PDE3B protein and activity blunted the insulin response to intravenous glucose, resulting in reduced glucose disposal. The effects were "dose"-dependent because mice overexpressing PDE3B 7-fold failed to increase insulin in response to glucose and hence exhibited pronounced glucose intolerance. Also, the insulin secretory response to intravenous glucagon-like peptide 1 was reduced in vivo. Similarly, islets stimulated in vitro exhibited reduced insulin secretory capacity in response to glucose and glucagon-like peptide 1. Perifusion experiments revealed that the reduction specifically affected the first phase of glucose-stimulated insulin secretion. Furthermore, morphological examinations demonstrated deranged islet cytoarchitecture. In conclusion, these results are consistent with an essential role for PDE3B in cAMP-mediated regulation of insulin release and glucose homeostasis.
  •  
5.
  • Rask, Katarina, 1966, et al. (författare)
  • Increased expression of the transcription factors CCAAT-enhancer binding protein-beta (C/EBBeta) and C/EBzeta (CHOP) correlate with invasiveness of human colorectal cancer.
  • 2000
  • Ingår i: International journal of cancer. Journal international du cancer. - 0020-7136. ; 86:3, s. 337-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulation of cell differentiation is most often impaired in malignant tumors and may represent a key mechanism for the progression of the disease. CCAAT-enhancer binding protein (C/EBP) is a family of transcription factors involved in the regulation of embryonic gut development in rodents, which has also been detected in various malignancies, e.g., liposarcomas and breast and ovarian epithelial tumors. We studied the relationship between C/EBP and tumor histology (Duke's invasive stage and pathological grade) in colorectal cancer. Immunoblotting techniques were used on microdissected fresh frozen tumor specimens, and expression of C/EBPalpha, C/EBPbeta and C/EBPzeta (CHOP) was analyzed in addition to that of the cell-cycle regulator p53 and the proliferation marker PCNA. Expression of C/EBPbeta (LAP isoforms) was markedly increased in all tumors compared with normal colon mucosa. Although the inter-patient variability was large, we found that LIP, the isoform of C/EBPbeta known to inhibit transcription, was expressed at higher levels in Duke's stage B tumors compared with Duke's stage A, whereas Duke's C tumors had the lowest LIP expression. A similar relationship was seen for CHOP. The cell-cycle regulator gene p53 was the only factor that clearly correlated with pathological grade: a decrease in p53 expression was demonstrated. Our data suggest that genetic and cellular events involving C/EBPbeta and CHOP are important for tumor invasion and that these events do not appear to be related to the pathological grade of the tumor.
  •  
6.
  • Rodrigo Blomqvist, Sandra, 1974, et al. (författare)
  • Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1.
  • 2004
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; 113:11, s. 1560-70
  • Tidskriftsartikel (refereegranskat)abstract
    • While macro- and microscopic kidney development appear to proceed normally in mice that lack Foxi1, electron microscopy reveals an altered ultrastructure of cells lining the distal nephron. Northern blot analyses, cRNA in situ hybridizations, and immunohistochemistry demonstrate a complete loss of expression of several anion transporters, proton pumps, and anion exchange proteins expressed by intercalated cells of the collecting ducts, many of which have been implicated in hereditary forms of distal renal tubular acidosis (dRTA). In Foxi1-null mutants the normal epithelium with its two major cell types - principal and intercalated cells - has been replaced by a single cell type positive for both principal and intercalated cell markers. To test the functional consequences of these alterations, Foxi1(-/-) mice were compared with WT littermates in their response to an acidic load. This revealed an inability to acidify the urine as well as a lowered systemic buffer capacity and overt acidosis in null mutants. Thus, Foxi1(-/-) mice seem to develop dRTA due to altered cellular composition of the distal nephron epithelium, thereby denying this epithelium the proper gene expression pattern needed for maintaining adequate acid-base homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy