SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engler O) srt2:(2020-2023)"

Sökning: WFRF:(Engler O) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aybas, Deniz, et al. (författare)
  • Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance
  • 2021
  • Ingår i: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 126:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of an experimental search for ultralight axionlike dark matter in the mass range 162-166 neV. The detection scheme of our Cosmic Axion Spin Precession Experiment is based on a precision measurement of Pb-207 solid-state nuclear magnetic resonance in a polarized ferroelectric crystal. Axionlike dark matter can exert an oscillating torque on Pb-20(7) nuclear spins via the electric dipole moment coupling g(d) or via the gradient coupling g(aNN). We calibrate the detector and characterize the excitation spectrum and relaxation parameters of the nuclear spin ensemble with pulsed magnetic resonance measurements in a 4.4 T magnetic field. We sweep the magnetic field near this value and search for axionlike dark matter with Compton frequency within a 1 MHz band centered at 39.65 MHz. Our measurements place the upper bounds vertical bar g(d)vertical bar < 9.5 x 10(-4) GeV-2 and vertical bar g(aNN)vertical bar( )< 2.8 x 10(-1) GeV-1 (95% confidence level) in this frequency range. The constraint on g d corresponds to an upper bound of 1.0 x 10(-21) e cm on the amplitude of oscillations of the neutron electric dipole moment and 4.3 x 10(-6) on the amplitude of oscillations of CP-violating theta parameter of quantum chromodynamics. Our results demonstrate the feasibility of using solid-state nuclear magnetic resonance to search for axionlike dark matter in the neV mass range.
  •  
3.
  • Chomez, A., et al. (författare)
  • An imaged 15 MJup companion within a hierarchical quadruple system
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 676, s. L10-L10
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since 2019, the direct imaging B-star Exoplanet Abundance STudy (BEAST) at SPHERE@VLT has been scanning the surroundings of young B-type stars in order to ascertain the ultimate frontiers of giant planet formation. Recently, the 17+3-4 Myr HIP 81208 was found to host a close-in (∼50 au) brown dwarf and a wider (∼230 au) late M star around the central 2.6 M⊙ primary.Aims. Alongside the continuation of the survey, we are undertaking a complete reanalysis of archival data aimed at improving detection performances so as to uncover additional low-mass companions.Methods. We present here a new reduction of the observations of HIP 81208 using the patch covariance algorithm (PACO), a recent and powerful algorithm dedicated to processing high-contrast imaging datasets, as well as more classical algorithms and a dedicated point spread function subtraction approach. The combination of different techniques allowed for a reliable extraction of astrometric and photometric parameters.Results. A previously undetected source was recovered at a short separation from the C component of the system. Proper motion analysis provided robust evidence for the gravitational bond of the object to HIP 81208 C. Orbiting C at a distance of ∼20 au, this 15 MJup brown dwarf becomes the fourth object of the hierarchical HIP 81208 system.Conclusions. Among the several BEAST stars which are being found to host substellar companions, HIP 81208 stands out as a particularly striking system. As the first stellar binary system with substellar companions around each component ever found by direct imaging, it yields exquisite opportunities for thorough formation and dynamical follow-up studies.
  •  
4.
  •  
5.
  • Gratton, R., et al. (författare)
  • Investigating three Sirius-like systems with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sirius-like systems are relatively wide binaries with a separation from a few to hundreds of au; they are composed of a white dwarf (WD) and a companion of a spectral type earlier than M0. Here we consider main sequence (MS) companions, where the WD progenitor evolves in isolation, but its wind during the former asymptotic giant branch (AGB) phase pollutes the companion surface and transfers some angular momentum. They are rich laboratories to constrain stellar models and binary evolution.Aims. Within the SpHere INfrared survey for Exoplanet survey that uses the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope, our goal is to acquire high contrast multi-epoch observations of three Sirius-like systems, HD 2133, HD 114174, and CD-56 7708 and to combine this data with archive high resolution spectra of the primaries, TESS archive, and literature data.Methods. These WDs are easy targets for SPHERE and were used as spectrophotometric standards. We performed very accurate abundance analyses for the MS stars using methods considered for solar analogs. Whenever possible, WD parameters and orbits were obtained using Monte Carlo Markov chain methods.Results. We found brighter J and K magnitudes for HD 114174B than obtained previously and extended the photometry down to 0.95 μm. Our new data indicate a higher temperature and then shorter cooling age (5.57 ± 0.02 Gyr) and larger mass (0.75 ± 0.03 M⊙) for this WD than previously assumed. Together with the oldest age for the MS star connected to the use of the Gaia DR2 distance, this solved the discrepancy previously found with the age of the MS star. The two other WDs are less massive, indicating progenitors of ∼1.3 M⊙ and 1.5 − 1.8 M⊙ for HD 2133B and CD-56 7708B, respectively. In spite of the rather long periods, we were able to derive useful constraints on the orbit for HD 114174 and CD-56 7708. They are both seen close to edge-on, which is in agreement with the inclination of the MS stars that are obtained coupling the rotational periods, stellar radii, and the projected rotational velocity from spectroscopy. The composition of the MS stars agrees fairly well with expectations from pollution by the AGB progenitors of the WDs: HD 2133A has a small enrichment of n-capture elements, which is as expected for pollution by an AGB star with an initial mass < 1.5 M⊙; CD-56 7708A is a previously unrecognized mild Ba-star, which is also expected due to pollution by an AGB star with an initial mass in the range of 1.5 − 3.0 M⊙; and HD 114174 has a very moderate excess of n-capture elements, which is in agreement with the expectation for a massive AGB star to have an initial mass > 3.0 M⊙.Conclusions. On the other hand, none of these stars show the excesses of C that are expected to go along with those of n-capture elements. This might be related to the fact that these stars are at the edges of the mass range where we expect nucleosynthesis related to thermal pulses. More work, both theoretical and observational, is required to better understand this issue.
  •  
6.
  • Mesa, D., et al. (författare)
  • Limits on the presence of planets in systems with debris discs : HD92945 and HD107146
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:1, s. 1276-1289
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent observations of resolved cold debris discs at tens of au have revealed that gaps could be a common feature in these Kuiper-belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer in near the edges of the disc. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1–2 MJup for planets located inside the gap and to less than 5 MJup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the discs around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct-imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial-velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper-motion anomaly of HD 107146 to values of 2–7 au and 2–5 MJup, respectively.
  •  
7.
  • Squicciarini, V., et al. (författare)
  • A scaled-up planetary system around a supernova progenitor
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Virtually all known exoplanets reside around stars with M < 2.3 M⊙ either due to the rapid evaporation of the protostellar disks or to selection effects impeding detections around more massive stellar hosts.Aims. To clarify if this dearth of planets is real or a selection effect, we launched the planet-hunting B-star Exoplanet Abundance STudy (BEAST) survey targeting B stars (M > 2.4 M⊙) in the young (5-20 Myr) Scorpius-Centaurus association by means of the high-contrast spectro-imager SPHERE at the Very Large Telescope.Methods. In this paper we present the analysis of high-contrast images of the massive (M - 9 M⊙) star μ2 Sco obtained within BEAST. We carefully examined the properties of this star, combining data from Gaia and from the literature, and used state-of-the-art algorithms for the reduction and analysis of our observations.Results. Based on kinematic information, we found that μ2 Sco is a member of a small group which we label Eastern Lower Scorpius within the Scorpius-Centaurus association. We were thus able to constrain its distance, refining in turn the precision on stellar parameters. Around this star we identify a robustly detected substellar companion (14.4 ± 0.8 MJ)at a projected separation of 290 ± 10 au, and a probable second similar object (18.5 ± 1.5 MJ) at 21 ± 1 au. The planet-to-star mass ratios of these objects are similar to that of Jupiter to the Sun, and the flux they receive from the star is similar to those of Jupiter and Mercury, respectively.Conclusions. The robust and the probable companions of μ2 Sco are naturally added to the giant 10.9 MJ planet recently discovered by BEAST around the binary b Cen system. While these objects are slightly more massive than the deuterium burning limit, their properties are similar to those of giant planets around less massive stars and they are better reproduced by assuming that they formed under a planet-like, rather than a star-like scenario. Irrespective of the (needed) confirmation of the inner companion, μ2 Sco is the first star that would end its life as a supernova that hosts such a system. The tentative high frequency of BEAST discoveries is unexpected, and it shows that systems with giant planets or small-mass brown dwarfs can form around B stars. When putting this finding in the context of core accretion and gravitational instability formation scenarios, we conclude that the current modeling of both mechanisms is not able to produce this kind of companion. The completion of BEAST will pave the way for the first time to an extension of these models to intermediate and massive stars.
  •  
8.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy