SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engquist Isak) srt2:(1995-1999)"

Sökning: WFRF:(Engquist Isak) > (1995-1999)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bertilsson, L, et al. (författare)
  • Adsorption of dimethyl methylphosphonate on self-assembled alkanethiolate monolayers
  • 1998
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY B. - : AMER CHEMICAL SOC. - 1089-5647 .- 1520-6106 .- 1520-5207. ; 102:7, s. 1260-1269
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption of dimethyl methylphosphonate (DMMP), a model molecule for sarin, on three different organic interfaces, prepared by solution self-assembly of alkanethiols on gold, was followed by a surface acoustic wave mass sensor and infrared reflection-absorption spectroscopy at room temperature. The surfaces, characterized by the following tail groups (-OH, -CH3, -COOH), show both quantitative and qualitative differences concerning the interaction with DMMP, the acid surface giving rise to the strongest adsorption. Results obtained in UHV, at low temperatures using infrared spectroscopy and temperature-programmed desorption, support this observation and give complementary information about the nature of the interaction. The hydrogen-bond-accepting properties of the P=O part of DMMP and its impact on the design of sensing interfaces based on hydrogen bonding, as well as the use of self-assembled monolayers to study molecular interactions, are discussed.
  •  
2.
  • Bertilsson, Lars, et al. (författare)
  • Interaction of dimethyl methylphosphonate with alkanethiolate monolayers studied by temperature-programmed desorption and infrared spectroscopy
  • 1997
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY B. - : AMER CHEMICAL SOC. - 1089-5647 .- 1520-6106 .- 1520-5207. ; 101:31, s. 6021-6027
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption of dimethyl methylphosphonate (DMMP) on well-defined organic surfaces consisting of self-assembled monolayers (SAMs) of omega-substituted alkanethiolates on gold has been studied. Three different surfaces were examined: one terminated with -OH groups (Au/S-(CH2)(16)-OH), one with -CH3 (Au/S-(CH2)(15)-CH3), and one mixed surface with approximately equal amounts of -OH and -CH3 terminated thiols. Detailed information about the nature and strength of the interaction was gathered by infrared reflection-absorption spectroscopy and temperature-programmed desorption under ultrahigh-vacuum conditions. It is found that the outermost functional groups of the thiol monolayer have a pronounced impact on the interaction with DMMP at low coverage. The -OH surface, allowing for hydrogen bonds with the P=O part of the DMMP molecule, increases the strength of interaction by approximately 3.8 kJ/mol as compared to the -CH3 surface. A preadsorbed layer of D2O leads to stronger interaction on all surfaces. This is explained by additional hydrogen bond formation between free O-D at the ice-vacuum interface and DMMP.
  •  
3.
  • Engquist, Isak, et al. (författare)
  • D2O ice on controlled wettability self-assembled alkanethiolate monolayers : Cluster formation and substrate-adsorbate interaction
  • 1996
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY. - : AMER CHEMICAL SOC. - 0022-3654 .- 1541-5740. ; 100:51, s. 20089-20096
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared reflection-absorption spectroscopy is used to investigate thin (1-200 Angstrom average thickness) overlayers of D2O ice deposited in ultrahigh vacuum on controlled wettability self-assembled monolayers. The monolayers were derived from mixed solutions of HS(CH2)(15)CH3 and HS(CH2)(16)OH, making it possible to examine the whole range of samples from f(OH) = 0.0 to f(OH) 1.0, where f(OH) denotes the molar fraction of OH-terminated thiols in the preparation solution. This paper focuses on the interaction between the ice and the monolayer. It is shown that water molecules do not penetrate into the monolayer but that two types of interaction with the chain-terminating groups occur: hydrogen bond formation with surface hydroxyls and weak dipole-dipole interaction with surface methyls. For surfaces with f(OH) less than 0.3, the latter interaction causes the free OD mode, normally observed at 2729 cm(-1), to shift to 2704 cm(-1), thereby providing a spectral signature feature whose intensity is directly proportional to the relative area of the ice/monolayer interface. Quantitative analysis of the infrared spectra suggests that ice clusters are essentially flat on surfaces with 0.6 less than f(OH) less than 1.0 and become more droplet-like for decreasing f(OH) below 0.6. On f(OH) = 0.0 surfaces, the microscopic clusters display high contact angles (similar to 120 degrees), and full surface coverage does not occur until the average overlayer thickness is 150-200 Angstrom.
  •  
4.
  • Engquist, Isak, et al. (författare)
  • Hydrogen Bond Interaction between Self-Assembled Monolayers and Adsorbed Water Molecules and Its Implications for Cluster Formation
  • 1995
  • Ingår i: Journal of Physical Chemistry B. - : AMER CHEMICAL SOC. - 1520-6106 .- 1520-5207 .- 0022-3654 .- 1541-5740. ; 99:39, s. 14198-14200
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared spectroscopy is used to investigate the adsorption of D2O onto self-assembled monolayers of methyl 16-mercaptohexadecanoate on gold. The D2O molecules are shown to interact with the carbonyl oxygens of the monolayer, forming hydrogen bonds and causing a structural rearrangement of the CO2CH3 terminal group. The number of hydrogen bonds decreases as the amorphous-like, essentially flat (two-dimensional) ice overlayer that forms at 100 K changes into polycrystalline-like ice upon annealing at 140 K. This decrease is a consequence of the formation of three-dimensional ice clusters, which leaves a large fraction of the monolayer surface bare.
  •  
5.
  • Engquist, Isak, et al. (författare)
  • Infrared characterization of amorphous and polycrystalline D2O ice on controlled wettability self-assembled alkanethiolate monolayers
  • 1997
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 106:8, s. 3038-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared reflection-absorption spectroscopy has been used to characterize thin overlayers (1-200 Angstrom) of D2O ice deposited in UHV onto a set of self-assembled alkanethiolate monolayers (SAMs) of controlled wettabilities on gold. The SAMs were prepared from a series of controlled composition, mixed solutions of HS(CH2)(15)CH3 and HS(CH2)(16)OH, making it possible to investigate the whole wettability range from theta approximate to 0 degrees to theta=112 degrees, where theta is the static contact angle with water. Dosing of D2O and infrared measurements were carried out at selected sample temperatures between 82 and 150 K. Experimental spectra of ice overlayers recorded below 100 K on all SAM substrates are in good agreement with simulated reflection-absorption spectra, derived from the optical constants of amorphous ice. This agreement allows accurate film thickness determination. In contrast, lack of correspondence in spectral signature is noted between the spectra of annealed films and simulated polycrystalline (or amorphous) ice spectra. We interpret this discrepancy to suggest that significant substrate-induced differences between thin overlayers and bulk ice persist in the latter case. Spectral indications of ice-substrate interaction are also seen for amorphous ice, and are especially prominent in the case of highly hydrophobic (pure CH3-terminated, theta=112 degrees) substrates. In this case the substrate effect extends up to an average film thickness (150-200 Angstrom) corresponding to similar to 50 ice monolayers, in contrast to highly hydrophilic OH-terminated substrate, where the substrate effects appear to vanish beyond similar to 5 monolayers (15-20 Angstrom average thickness). Annealing of thin ice overlayers (2-3 monolayers) clearly demonstrates a strong correlation between the onset as well as progression of the transition from amorphous to polycrystalline ice and the exact substrate wettability or chemical composition. The data further suggest the existence of metastable intermediate forms, that are neither purely amorphous nor polycrystalline. We discuss these observations in terms of substrate-overlayer interaction. A tentative phase diagram summarizing these results is presented. (C) 1997 American Institute of Physics.
  •  
6.
  • Engquist, Isak, et al. (författare)
  • Microscopic wettability of ester- and acetate-terminated self-assembled monolayers
  • 1997
  • Ingår i: Langmuir. - : American Chemical Society. - 0743-7463 .- 1520-5827. ; 13:15, s. 4003-4012
  • Tidskriftsartikel (refereegranskat)abstract
    • Four different carbonyl-containing self-assembled monolayers (SAMs) of alkanethiolates on gold were studied to assess the impact of the functional group Linked to the carbonyl upon its hydrogen bond accepting capability. These SAMs (HS(CH2)(16)O(C=O)-X,X = CH3, CF3, or C6H5, and HS(CH2)(15)(C=O)OCH3) were thoroughly characterized with contact angle measurements, single wavelength ellipsometry, and infrared reflection-absorption spectroscopy (IRAS) prior to the studies of interaction with D2O. The first three monolayer compounds were introduced by reacting hydroxyl-terminated SAMs (HS(CH2)(16)OH) with either acetyl chloride, trifluoroacetic anhydride, or benzoyl chloride. The behavior of D2O ice on the SAMs was investigated at 100 K with IRAS and temperature programmed desorption (TPD). On all monolayers the D2O molecules were shown to interact with the carbonyl oxygen. The degree of interaction depended upon the termination of the thiol, where the size, structure, and electronegativity of the terminating groups in the molecules comprising the monolayer were found to be important factors. Indications of interaction with the C-O-C oxygen were seen for all compounds, as well as weak interaction between water molecules and the CF3 group of one of the investigated SAMs. Common behavior for all four monolayers with an adsorbed D2O overlayer was a decrease in the number of hydrogen bonds to the substrate when the overlayer was annealed from amorphous ice at 100 K to polycrystalline-like ice at 140 K. The spectral changes accompanying the structural transition were consistent with a change from a mainly flat overlayer to condensed three-dimensional clusters. The bulk-to-surface molecular ratio of adsorbed ice clusters could be assessed by IRAS and correlated to macroscopic wetting properties. Our results infer that microscopic ice clusters on these SAMs qualitatively mimic the shape of macroscopic water drops on the same SAMs. Results of TPD measurements are also consistent with this view.
  •  
7.
  • Engquist, Isak, et al. (författare)
  • Temperature-programmed desorption and infrared studies of D2O ice on self-assembled alkanethiolate monolayers : influence of substrate wettability
  • 1995
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY. - : AMER CHEMICAL SOC. - 0022-3654 .- 1541-5740. ; 99:32, s. 12257-12267
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper examines the relationship between the thermal desorption of thin overlayers of condensed D2O ice and the wettability properties of the supporting substrate surface. Mixed self-assembled monolayers (SAMs) on gold with controlled chemical composition and wettability (-0.4 less than cos theta less than 1.0, where theta represents the static contact angle with water) derived from HS(CH2)(16)OH and HS(CH2)(15)CH3 were used as model surfaces. The D2O ice overlayers were prepared on these substrates by dosing of 0.1-30 langmuirs of D2O in ultrahigh vacuum at 80-120 K and characterized with temperature-programmed desorption (TPD). Infrared reflection-absorption spectroscopy (IRAS) was also used to characterize the structural progressions within the overlayers during the course of the TPD experiments, as well as at selected temperatures before and after annealing of the overlayer structure. The IRAS data show that amorphous-like ice is formed at sufficiently low temperatures (less than or equal to 100 K) on all mixed SAMs, regardless of their wettability. A structural transition of the D2O ice from amorphous-like to polycrystalline-like is observed above 100 K. The exact onset of the transition is strongly dependent on the wettability and varies from about 110 K on the extreme hydrophobic (CH3) substrate to 145-150 K on the hydrophilic (OH) substrate. On the most hydrophilic substrates, the strong hydrogen bond interaction with surface hydroxyls prevents completion of the structural transition before desorption of the D2O overlayer. This type of pinning of the D2O molecules to the substrate surface is most likely responsible for the sharp increase in desorption energy of similar to 0.2 kcal/mol which is seen at cos theta approximate to 0.6, a value defining the hydrophilicity limit above which, for our set of experimental parameters, the transition is no longer completed. The TPD data also support a model of the D2O overlayer as forming clusters of very different shape depending on substrate wettability-flat, two-dimensional clusters on hydrophilic SAMs and dropletlike, three-dimensional clusters on hydrophobic SAMs.
  •  
8.
  • Lestelius, Magnus, et al. (författare)
  • Order/disorder gradients of n-alkanethiols on gold
  • 1999
  • Ingår i: Colloids and Surfaces B. - : Elsevier. - 0927-7765 .- 1873-4367. ; 15:1, s. 57-70
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper explores the interfacial properties of one-dimensional molecular gradients of alkanethiols (HS-(CH2)(n)- X) on gold. The kinetics and thermodynamics of monolayer formation are important issues for these types of mixed molecular assemblies. The influence of chain length difference on the contact angles with hexadecane (HD), theta(a) and theta(r), and the hysteresis, has been studied by employing alkanethiols HS-(CH2)(n)-CH3, with n = 9, 11, 13, 15 and 17, in the preparation of the self-assembled monolayers (SAM) gradients. The contact angles with hexadecane, at the very extreme ends of the gradients, show characteristic values of a highly ordered CH3-like assembly: theta(a) = 45-50 degrees. In the middle of the gradients theta(a) drops noticeably and exhibits values representative for CH2-like polymethylenes, theta(a) = 20-30 degrees, indicating a substantial disordering of the protruding chains of the longer component in the gradient assembly. As expected, the exposure of CH2-groups to the probing liquid increases with increasing differential chain length of the two n-alkanethiol used, in this case eight methylene units. However, the contact angles always display a non-zero value which means that even at a chain length difference of eight methylene units there is a substantial exposure of methyl (CH3) groups to the probing liquid. With infrared reflection-absorption spectroscopy (IRAS) we have monitored the structural behavior of the polymethylene chains along the gradient. We find complementary evidence for disordered chains in the gradient region, and the IRAS results correlate well with the contact angle measurements. (C) 1999 Elsevier Science B.V. All rights reserved.
  •  
9.
  • Liedberg, Bo, et al. (författare)
  • Self-assembly of alpha-functionalized terthiophenes on gold
  • 1997
  • Ingår i: JOURNAL OF PHYSICAL CHEMISTRY B. - : AMER CHEMICAL SOC. - 1089-5647 .- 1520-6106 .- 1520-5207. ; 101:31, s. 5951-5962
  • Tidskriftsartikel (refereegranskat)abstract
    • alpha-Functionalized terthiophenes containing disulfide (-S-T-3-H)(2) and alkanethiol (HS-(CH2)(11)-T-3-H) anchoring groups have been synthesized for direct immobilization onto gold. Monolayer structures of these compounds are prepared by spontaneous assembly from ethanol solutions on evaporated gold substrates and thoroughly characterized by ellipsometry, contact angle goniometry, infrared and X-ray photoelectron spectroscopy, and cyclic voltammetry. The two molecules coordinate to the gold substrate exclusively via the anchoring groups upon formation of gold-thiolate bonds. The kinetics of monolayer formation vary dramatically for the two compounds. The alkanethiol analogue assembles rapidly, within a few minutes, and forms a densely packed and highly organized monolayer, with the alkyl chains in an almost perfect all-trans conformation and the C-alpha-C-alpha axis of the alpha-T-3 units tilted about 14 degrees away from the surface normal. The assembly process is much slower for the disulfide, but an organized monolayer with an average alpha-T-3 chain tilt of about 33 degrees will eventually form when the assembly is allowed to equilibrate with a solution containing the disulfide for at least 1 day. Moreover, the two monolayer assemblies also display a remarkably different electrochemical, behavior. The heterogeneous electron-transfer rate at the disulfide-covered gold substrate is almost indistinguishable from that at bare gold, suggesting that the assembly contains a large number of easily accessible defects. An alternative mechanism for explaining the large electron-transfer rate involving electronic coupling via the conjugated pi-system of the alpha-T-3 units is also proposed. The electrochemical response is significantly reduced for the HS-(CH2)(11)-T-3-H assembly, but another type of defects, the so-called shallow defects originating from sparsely populated areas on the electrode surface, can be identified.
  •  
10.
  • Persson, Nils-Ola, et al. (författare)
  • Adsorption of potassium O,O -Di(para-fluorophenyl) dithiophosphate on gold, silver, and copper
  • 1999
  • Ingår i: Langmuir. - : American Chemical Society. - 0743-7463 .- 1520-5827. ; 15:23, s. 8161-8169
  • Tidskriftsartikel (refereegranskat)abstract
    • Gold, silver, and copper substrates were immersed in aqueous solutions of a simulant mineral flotation agent, potassium O,O-di(para-fluorophenyl) dithiophosphate. The adsorbed molecules on gold were studied in detail with infrared reflection-absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy(XPS), and ellipsometry. The most significant peaks in the IRAS spectra were assigned to the appropriate molecular vibrations and their relative intensities were compared with those found in simulated spectra derived from the isotropic optical constants of corresponding metal salts to deduce the binding and orientation. Moreover, intensity ratios of XPS signals were compared at different takeoff angles to reveal the depth distribution of atoms in the dithiophosphate layers. The following modes of adsorption were deduced: The adsorption on gold takes place by the formation of bonds involving the two sulfur atoms of the flotation agent (bridging coordination), regardless of immersion time and solution concentration. A thin and less organized layer is formed at low exposures. Longer adsorption times with more concentrated solutions give a more dense molecular packing and vertical orientation of the molecules on the surface. Adsorption on silver and copper was studied by IRAS. The adsorption proceeded via a dissolution-precipitation mechanism that manifests itself by less pronounced orientation effects. The intensities of the silver and copper IRAS spectra after long immersion times in concentrated solutions also show the formation of multilayers with some persisting long-range molecular ordering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy